News and Events
| Temp: | 59 °F | N2 Boiling: | 75.9 K |
| Humidity: | 31% | H2O Boiling: | 368.5 K |
| Pressure: | 86 kPa | Sunrise: | 7:10 AM |
| Wind: | 2 m/s | Sunset: | 5:12 PM |
| Precip: | 0 mm | Sunlight: | 0 W/m² |
Selected Publications
Objective
To investigate the dose-response relationship between dietary sugar and T2D risk.
Methods
MEDLINE, Embase, CINAHL, Web of Science and Cochrane databases were searched through July 9, 2024 for prospective cohorts reporting relative measures of incident T2D risk by categories of dietary sugar (total, free, added, fructose, sucrose) or two beverage sources (non-diet SSB, fruit juice) in healthy adults (Prospero ID: CRD42023401800). Linear and restricted cubic spline dose-response models were fitted for each exposure and study-specific slopes and confidence intervals (CIs) were calculated. Heterogeneity was evaluated using Q-statistics. Risk of bias was evaluated using ROBINS-E tool GRADE approach was applied to assess the certainty of evidence.
Results
Of 10,384 studies, 29 cohorts were included: SSB:18 (n = 541,288); fruit juice:14 (n = 490,413); sucrose: 7 (n = 223,238); total sugar: 4 (n = 109,858); fructose: 5 (n = 158,136); and added sugar: 2 (n = 31,004). Studies were conducted in Europe (13), USA (11), Asia (6), Australia (4), and Latin America (3). Each additional serving of SSB and fruit juice was associated with a higher risk of T2D (RR: 1.25; 95% CI: 1.17–1.35 and RR: 1.05; 95% CI: >1.00–1.11, respectively; moderate certainty). In contrast, 20 g/d intakes of total sugar and sucrose were inversely associated with T2D (RR: 0.96; 95% CI: 0.94–0.98; low certainty; and RR: 0.95; 95% CI: 0.91– <1.00; moderate certainty, respectively). No associations for added sugar (RR: 0.99; 95% CI: 0.96–1.01; low certainty) or fructose (RR: 0.98; 95% CI: 0.83–1.15; very low certainty).
Conclusion
These findings suggest that dietary sugar consumed as a beverage (SSB and fruit juice) is associated with incident T2D risk. The results do not support the common assumption that dietary sugar (i.e., total sugar and sucrose), irrespective of type and amount, is consistently associated with increased T2D risk.
The last decade has shown the great potential that X-ray Free Electron Lasers (FEL) have to study High Energy Density (HED) physics. Experiments at FELs have made significant breakthroughs in Shock Physics and Dynamic Diffraction, Dense Plasma Physics and Warm Dense Matter Science, using techniques such as isochoric heating, inelastic scattering, small angle scattering and X-ray diffraction. In addition, and complementary to these techniques, the coherent properties of the FEL beam can be used to image HED samples with high fidelity. We present new imaging diagnostics and techniques developed at the Matter in Extreme Conditions (MEC) instrument at Linac Coherent Light Source (LCLS) over the last few years. We show results in Phase Contrast Imaging geometry, where the X-ray beam propagates from the target to a camera revealing its phase, as well as in Direct Imaging geometry, where a real image of the sample plane is produced in the camera with a spatial resolution down to 200 nm. Last, we show an implementation of the Talbot Imaging method allowing both X-ray phase and intensity measurements change introduced by a target with sub-micron resolution.
Hybrid perovskite dimensional engineering enables the creation of one- to three-dimensional (1D to 3D) networks of corner-sharing metal halide octahedra interspersed by organic cations, offering opportunities to tailor semiconducting properties through quantum- and dielectric-confinement effects. Beyond the discrete options, intermediate dimensionality has been introduced in the form of quasi-2D phases with inorganic layers of varying thickness. The current study extends this approach to quasi-1D lead-iodide systems with variable ribbon widths from 2 to 6 octahedra, stabilized by flexible molecular configurations, cation mixing of organic cations, or guest molecule selection. This family of quasi-1D structures adopts characteristic well-like configurations, with intraoctahedral distortion increasing from the core to the edges. First-principles density-functional theory (DFT) calculations and optical characterizations─i.e., temperature-dependent UV–visible absorption, electro-absorption, photoluminescence, and circular dichroism─collectively demonstrate lower bandgap and exciton binding energy with increased ribbon width due to tailorable quantum confinement and structural distortions. Access to two ribbon widths within a single well-ordered structure yields distinguishable bandgaps and excitonic properties, demonstrating a class of dual-quantum confinement materials within the perovskite family. Our study serves as a starting point, showcasing a paradigm to stabilize increased ribbon widths through further tuning of organic templating effects. This continuum between 2D and 1D structures offers promise for fine-tuning the dimensionality and optoelectronic properties of hybrid perovskites.
In shallow-water downward-refracting ocean environments, hydrophone measurements of shipping noise encode information about the seabed. In this study, neural networks are trained on synthetic data to predict seabed classes from multichannel hydrophone spectrograms of shipping noise. Specifically, ResNet-18 networks are trained on different combinations of synthetic inputs from one, two, four, and eight channels. The trained networks are then applied to measured ship spectrograms from the Seabed Characterization Experiment 2017 (SBCEX 2017) to obtain an effective seabed class for the area. Data preprocessing techniques and ensemble modeling are leveraged to improve performance over previous studies. The results showcase the predictive capability of the trained networks; the seabed predictions from the measured ship spectrograms tend towards two seabed classes that share similarities in the upper few meters of sediment and are consistent with geoacoustic inversion results from SBCEX 2017. This work also demonstrates how ensemble modeling yields a measure of precision and confidence in the predicted results. Furthermore, the impact of using data from multiple hydrophone channels is quantified. While the water sound speed in this experiment was only slightly upward refracting, we anticipate increased advantages of using multiple channels to train neural networks for more varied sound speed profiles.
The coupling between structural, electronic and magnetic degrees of freedom across the metal-insulator transition in V2O3 makes it hard to determine the main driving mechanism behind the transition. Specifically, the role of magnetism is debated and its interplay with the other transitions has not been established. To address this issue, this work uses a combination of muon spin relaxation/rotation, electrical transport and reciprocal space mapping which allows to correlate magnetic, electronic and structural degrees of freedom in strain-engineered V2O3 thin films. Evidence is found for a magnetic instability in the vicinity of the structural transition. This is manifested as a decrease in the antiferromagnetic moment in proximity to the structural and electronic transitions. Moreover, this work finds evidence for an onset of antiferromagnetic (AF) fluctuations in the rhombohedral phase even without a structural transition to the monoclinic phase. In samples where the transition is most strongly suppressed by strain, a depth-dependent magnetic state is observed. These results reveal the importance of an AF instability in the paramagnetic phase in triggering the metal-insulator transition and the crucial role of the structural transition in allowing for the formation of an ordered AF state.
Time Reversal (TR) is a signal processing technique that can be used to focus acoustic waves to a specific location in space, with most applications aiming to create an impulsive focus. This study instead aims to focus long-duration noise signals using TR. This paper seeks to generate higher amplitude noise at a desired location over an existing method of broadcasting equalized noise. Additionally, this paper explores various characteristics associated with focusing long duration noise using TR. The dependence of the focal amplitude on the duration of the focused signal is explored as well as the implications of using multiple sources when focusing noise. The focal amplitude decreases with longer duration and then levels off when the duration exceeds a few seconds. Coherent addition of focused noise is observed if all loudspeakers have coherent noise signals convolved with their reversed impulse responses. Lastly, focusing noise with a desired spectrum is explored.