News and Events

Thumbnail of The Bipolar Jets of KX Andromedae
Blasting outward from variable star KX Andromedae, these stunning bipolar jets are 19 light-years long. Recently discovered, they are revealed in unprecedented detail in this deep telescopic image centered on KX And and composed from over 692 hours of combined image data. In fact, KX And is spectroscopically found to be an interacting binary star system consisting of a bright, hot B-type star with a swollen cool giant star as its co-orbiting, close companion. The stellar material from the cool giant star is likely being transferred to the hot B-type star through an accretion disk, with spectacular symmetric jets driven outward perpendicular to the disk itself. The known distance to KX And of 2,500 light-years, angular size of the jets, and estimated inclination of the accretion disk lead to the size estimate for each jet of an astonishing 19 light-years. Free APOD Lecture in Phoenix: Wednesday, December 10 at 7 pm
Mount Timpanogos with sky above
Temp:  33 °FN2 Boiling:76.0 K
Humidity: 85%H2O Boiling:   368.6 K
Pressure:86 kPaSunrise:7:34 AM
Wind:2 m/s   Sunset:5:01 PM
Precip:0 mm   Sunlight:76 W/m²  
Image for Astronomers Discover New Course
This winter, ten students in BYU’s new “Advanced Planetary Astrophysics” taught by Darin Ragozzine course gained hands-on experience in planetary science research, mastering interdisciplinary skills to prepare for future careers in astronomy.
Image for New Applied Physics Major with an Emphasis in Data Science
Starting Fall 2025, BYU will offer a new Applied Physics: Data Science major that combines rigorous physics training with data science skills to prepare students for the growing demand in data-driven careers.
Image for The Physics of Life
BYU's new Biological Physics course introduces students to the physics behind biological processes, fostering interdisciplinary skills to tackle complex biological questions.
Image for Dr. Kent Gee Receives Top faculty Award
Dr. Kent Gee has been named the recipient of the Karl G. Maeser Distinguished Faculty Lecturer Award

Selected Publications

Thumbnail of figure from publication
Nathan R. Zuniga, Noah E. Earls, Jared M. Elison, Benjamin S. Jones, Ethan G. Smith, Noah G. Moran, Gerome M. Romero, Chad D. Hyer, Kimberly B. Wagstaff, Haifa M. Almughamsi, Mark K. Transtrum, and John C. Price (et al.)

Apolipoprotein E (ApoE) polymorphisms modify the risk of Alzheimer’s disease with ApoE4 strongly increasing and ApoE2 modestly decreasing risk relative to the control ApoE3. To investigate how ApoE isoforms alter risk, we measured changes in proteome homeostasis in transgenic mice expressing a human ApoE gene (isoform 2, 3, or 4). The regulation of each protein’s homeostasis is observed by measuring turnover rate and abundance for that protein. We identified 4849 proteins and tested for ApoE isoform-dependent changes in the homeostatic regulation of ~2700 ontologies. In the brain, we found that ApoE4 and ApoE2 both lead to modified regulation of mitochondrial membrane proteins relative to the wild-type control ApoE3. In ApoE4 mice, lack of cohesion between mitochondrial membrane and matrix proteins suggests that dysregulation of proteasome and autophagy is reducing protein quality. In ApoE2, proteins of the mitochondrial matrix and the membrane, including oxidative phosphorylation complexes, had a similar increase in degradation which suggests coordinated replacement of the entire organelle. In the liver we did not observe these changes suggesting that the ApoE-effect on proteostasis is amplified in the brain relative to other tissues. Our findings underscore the utility of combining protein abundance and turnover rates to decipher proteome regulatory mechanisms and their potential role in biology.

Thumbnail of figure from publication
Sabrina Hatt and Benjamin M. Frandsen (et al.)

Altermagnets represent a new class of magnetic phases without net magnetization, invariant under a combination of rotation and time reversal. Unlike conventional collinear antiferromagnets (AFM), altermagnets could lead to new correlated states and important material properties deriving from their nonrelativistic spin-split band structure. Indeed, they serve as the magnetic analogue of unconventional superconductors and can yield spin-polarized electrical currents in the absence of external magnetic fields, making them promising candidates for next-generation spintronics. Here, we report altermagnetism in the correlated insulator, magnetically ordered tetragonal oxychalcogenide, La2O3Mn2Se2. Symmetry analysis reveals a 𝑑𝑥2−𝑦2-wave-like spin-momentum locking arising from the Mn2O Lieb lattice, supported by density functional theory (DFT) calculations. Magnetic measurements confirm the AFM transition below ∼166K while neutron pair distribution function analysis reveals a 2D short-range magnetic order that persists above the Néel temperature. Single crystals are grown and characterized using x-ray diffraction, optical and electron microscopy, and micro-Raman spectroscopy to confirm the crystal structure, stoichiometry, and uniformity. Our findings establish La2O3Mn2Se2as a model altermagnetic system realized on a Lieb lattice.

Thumbnail of figure from publication
Mark C. Anderson and Kent L. Gee

When the SpaceX Falcon-9 rocket booster descends through the atmosphere after a launch, it produces a sonic boom with three shocks in the far field, rather than the usual two-shock N-wave. In this Letter, the additional shock's origin is explained using sonic boom theory, nonlinear propagation modeling, computational fluid dynamics, and photographic evidence. The extra central shock results from a forward-migrating compression wave caused by the grid fins merging with a rearward-migrating rarefaction wave caused by the lower portions of the booster, including the folded landing legs.

Thumbnail of figure from publication

Group-theoretical and linear-algebraic methods and tools have recently been developed that aim to exhaustively identify the small-angle rotational rigid-unit modes (RUMs) of a given framework material. But in their current form, they fail to detect RUMs that require a compensating lattice strain which grows linearly with the amplitude of the rigid-unit rotations. Here, we present a systematic approach to including linear strain compensation within the linear-algebraic RUM-search method, so that any geometrically possible small-angle RUM can be detected.

Thumbnail of figure from publication
Grant W. Hart, Kent L. Gee, Eric G. Hintz, Nathan F. Carlston, and Giovanna G. Nuccitelli (et al.)

At 7:30 AM on October 6, 2020 Space-X launched a Falcon-9 rocket from Kennedy Space Center. Photographer Trevor Mahlmann had positioned his camera in the location where the rocket would pass in front of the rising sun and took a series of images of that encounter. The high-intensity sound and shock waves originating in the plume are imaged by passing in front of the sun, particularly near the edge of the sun. This can be considered as a type of schlieren imaging system. The sound emitted from a supersonic rocket plume is thought to be due to Mach wave radiation. The images were processed to enhance the visibility of the propagating shock waves, and the propagation of those shock waves was traced back to the plume. This allowed the source location and emission direction of the sound to be determined. The measured shocks were found to be consistent with the predictions of Mach wave radiation from the plume, originating about 15-20 nozzle diameters down the plume, and radiating in a wide lobe peaking at about 70° from the plume direction. There are also indications that lower frequency waves are preferentially emitted at smaller angles relative to the plume.

Thumbnail of figure from publication
Tyce W. Olaveson, Kent L. Gee, Logan T. Mathews, and Hunter J. Pratt (et al.)

This paper presents a comprehensive overview of the operation and spectral performance of a novel lab-scale afterburning jet noise rig at Virginia Tech. The study involved steady-state operation at relevant Total Temperature Ratios (TTR) of approximately 6, typical for afterburning jets. The flow was discharged through a scaled-down GE F-404 supersonic nozzle, and far-field noise measurements were acquired using ground microphones positioned at 27 angular locations on a concrete pad. A key focus of the study is to benchmark the rig's performance by comparing its far-field Overall Sound Pressure Level (OASPL) with that of T-7A and F-35B aircraft operating at afterburner power. The investigation revealed that Nozzle Pressure Ratio (NPR) exerts a significant influence on OASPL at relatively close TTRs. Furthermore, the effects of varying TTR and NPR on OASPL were compared with trends observed in F-35A and F-35B operating at two distinct afterburner power levels. Acoustic efficiency in the presented cases lies in the range 0.41% to 0.51%. Phenomena only observed in full scale afterburning jet engine tests were reproduced for the first time in a laboratory scaled rig. This allowed the identification that engine combustion instabilities can convect downstream through the nozzle and impact the far-field noise spectrum. These instabilities manifest as distinct 'instability streaks' in a spatio-spectral map. The present study highlights the importance of conducting high TTR jet noise experiments in a controlled environment with known operating parameters (total pressure, total temperature, mass flow rate, dynamic pressure, etc.) to enhance the understanding of afterburning jet noise phenomena.