Materials Physics
Condensed matter physics studies the macroscopic and microscopic properties of the “condensed” phases of matter: metals, insulators, semiconductors, superconductors, nanostructures, liquids, and so forth. Nationally, this is the largest and most active area of physics research. Our interests at BYU center on the electronic, magnetic, optical, structural, and dynamic properties of nanostructures and solids, using experimental, theoretical, and computational methods. Our current activities include creation of new nanostructured materials and their study by scanning probe microscopy, magnetometry, and electron-based microscopy and spectroscopy; X-ray and neutron-scattering; computational studies of novel alloys and nanostructures; group theoretical methods applied to phase transitions in crystals; motion and structure of defects in crystals; optical and magnetic resonance studies of electrons and spin coherence in semiconductor nanostructures; magnetic memory and reversal processes in ferromagnetic thin films; and dynamics of superparamagnetic nanoparticles.