Neutron detection is an important component to Homeland Security. Portal monitors are put at points of entry into the country to detect illegal nuclear material entering the United States. In the past and currently, 3He-based detectors have and are being used in these portals. However, because of the current shortage of 3He, the BYU Nuclear Group is looking for alternative methods for neutron detection. In particular, I have been doing preliminary work on a two-photomultiplier tube hybrid neutron detector that utilizes lithium and cadmium components. This work focuses on how each component of the hybrid (lithium and cadmium) performs on its own. It then outlines what results are seen when both sides are simultaneously "watching" the same radiation source. Both the cadmium and lithium components work as expected when operating alone. When combined– i.e. both components are on and looking at the same radiation source–we see that the cadmium component is the dominating detection component in the hybrid detector. Relatively few events are seen from the lithium side. Further work should be done to confirm the results herein, to consider other setups that may yield more balanced results as well as to confirm the hope that a hybrid detector, such as the one here, can detect neutrons over a broader energy range than either component by itself. If this can be accomplished, the hybrid detector will become a more viable candidate for potential use in homeland security.