News and Events

Thumbnail of Gum 37 and the Southern Tadpoles
This cosmic skyscape features glowing gas and dark dust clouds alongside the young stars of NGC 3572. A beautiful emission nebula and star cluster, it sails far southern skies within the nautical constellation Carina. Stars from NGC 3572 are toward top center in the telescopic frame that would measure about 100 light-years across at the cluster's estimated distance of 9,000 light-years. The visible interstellar gas and dust, shown in colors of the Hubble palette, is part of the star cluster's natal molecular cloud, itself cataloged as Gum 37. Dense streamers of material within the nebula, eroded by stellar winds and radiation, clearly trail away from the energetic young stars. They are likely sites of ongoing star formation with shapes reminiscent of the Tadpoles of IC 410 -- better known to northern skygazers. In the coming tens to hundreds of millions of years, gas and stars in the cluster will be dispersed though, by gravitational tides and by violent supernova explosions that end the short lives of the massive cluster stars.
Mount Timpanogos with sky above
Temp:  52 °FN2 Boiling:75.9 K
Humidity: 47%H2O Boiling:   368.5 K
Pressure:86 kPaSunrise6:30 AM
Sunlight:350 W/m²   Sunset8:18 PM
Image for BYU’s Rising Astronomers Take Center Stage at the Winter AAS Conference
In early January 2025, a group of 16 students from Brigham Young University’s Physics & Astronomy Department showcased their research at the prestigious American Astronomical Society (AAS) in National Harbor, Maryland.
Image for Acoustics group studies the roar of SpaceX's Starship
Acoustics faculty and students measure the thunderous noise of the world’s most powerful rocket, exploring its impact on communities and the environment.
Image for Dr. John Colton’s Sabbatical to the National Renewable Energy Laboratory
Dr. John Colton embarked on a six-month sabbatical at the National Renewable Energy Laboratory (NREL) in Colorado to explore the use of terahertz radiation in probing the chiral properties of hybrid perovskite materials, a research area previously unfamiliar to him.
Image for Nathan Powers, Updated labs and AAPT lab committee work
Dr. Powers initiated the effort to update BYU’s physics undergraduate lab curriculum in 2015. The revamped curriculum, aimed at teaching students how to construct knowledge from experiments.

Selected Publications

Thumbnail of figure from publication
By Bryce T. Eggers, Harold T. Stokes, and Branton J. Campbell
Abstract:

Group-theoretical and linear-algebraic methods and tools have recently been developed that aim to exhaustively identify the small-angle rotational rigid-unit modes (RUMs) of a given framework material. But in their current form, they fail to detect RUMs that require a compensating lattice strain which grows linearly with the amplitude of the rigid-unit rotations. Here, we present a systematic approach to including linear strain compensation within the linear-algebraic RUM-search method, so that any geometrically possible small-angle RUM can be detected.

Thumbnail of figure from publication
By Grant W. Hart, Kent L. Gee, Eric G. Hintz, Nathan F. Carlston, and Giovanna G. Nuccitelli (et al.)
Abstract:

At 7:30 AM on October 6, 2020 Space-X launched a Falcon-9 rocket from Kennedy Space Center. Photographer Trevor Mahlmann had positioned his camera in the location where the rocket would pass in front of the rising sun and took a series of images of that encounter. The high-intensity sound and shock waves originating in the plume are imaged by passing in front of the sun, particularly near the edge of the sun. This can be considered as a type of schlieren imaging system. The sound emitted from a supersonic rocket plume is thought to be due to Mach wave radiation. The images were processed to enhance the visibility of the propagating shock waves, and the propagation of those shock waves was traced back to the plume. This allowed the source location and emission direction of the sound to be determined. The measured shocks were found to be consistent with the predictions of Mach wave radiation from the plume, originating about 15-20 nozzle diameters down the plume, and radiating in a wide lobe peaking at about 70° from the plume direction. There are also indications that lower frequency waves are preferentially emitted at smaller angles relative to the plume.

Thumbnail of figure from publication
By Tyce W. Olaveson, Kent L. Gee, Logan T. Mathews, and Hunter J. Pratt (et al.)
Abstract:

This paper presents a comprehensive overview of the operation and spectral performance of a novel lab-scale afterburning jet noise rig at Virginia Tech. The study involved steady-state operation at relevant Total Temperature Ratios (TTR) of approximately 6, typical for afterburning jets. The flow was discharged through a scaled-down GE F-404 supersonic nozzle, and far-field noise measurements were acquired using ground microphones positioned at 27 angular locations on a concrete pad. A key focus of the study is to benchmark the rig's performance by comparing its far-field Overall Sound Pressure Level (OASPL) with that of T-7A and F-35B aircraft operating at afterburner power. The investigation revealed that Nozzle Pressure Ratio (NPR) exerts a significant influence on OASPL at relatively close TTRs. Furthermore, the effects of varying TTR and NPR on OASPL were compared with trends observed in F-35A and F-35B operating at two distinct afterburner power levels. Acoustic efficiency in the presented cases lies in the range 0.41% to 0.51%. Phenomena only observed in full scale afterburning jet engine tests were reproduced for the first time in a laboratory scaled rig. This allowed the identification that engine combustion instabilities can convect downstream through the nozzle and impact the far-field noise spectrum. These instabilities manifest as distinct 'instability streaks' in a spatio-spectral map. The present study highlights the importance of conducting high TTR jet noise experiments in a controlled environment with known operating parameters (total pressure, total temperature, mass flow rate, dynamic pressure, etc.) to enhance the understanding of afterburning jet noise phenomena.

Thumbnail of figure from publication
By Kent L. Gee, Noah L. Pulsipher, Makayle S. Kellison, Grant W. Hart, Logan T. Mathews, and Mark C. Anderson
Abstract:

his Letter analyzes launch noise from Starship Super Heavy's Flights 5 and 6. While Flight-5 data covered 9.7-35.5 km, the stations during Flight 6 spanned 1.0-35.5 km. A comparison of A-weighted and unweighted maximum and exposure levels is made between flights and with an updated environmental assessment (EA). Key findings include: (a) the two flights' noise levels diverge beyond 10 km, (b) EA models overestimate A-weighted metrics, and (c) the acoustic energy from a Starship launch is equivalent to 2.2 Space Launch System launches or ∼11 Falcon 9 launches. These measurements help predict Starship's noise levels around Kennedy Space Center.

Thumbnail of figure from publication
By Samuel D. Bellows, Joseph E. Avila, and Timothy W. Leishman
Abstract:

The directional radiation patterns of musical instruments have long been defining characteristics known to influence their perceived qualities. Technical understanding of musical instrument directivities is essential for applications such as concert hall design, auralizations, and recording microphone placements. Nonetheless, the difficulties in measuring sound radiation from musician-played instruments at numerous locations over a sphere have severely limited their directivity measurement resolutions compared to standardized loudspeaker resolutions. This work illustrates how a carefully implemented multiple-capture transfer-function method adapts well to played musical instrument directivities and achieves compatible resolutions. Comparisons between a musician-played and artificially excited trumpet attached to a mannikin validate the approach’s effectiveness. The results demonstrate the trumpet’s highly directional characteristics at high frequencies and underscore the crucial effects of musician diffraction. Spherical spectral analysis reveals that standardized resolutions may only be sufficient to produce valid complex-valued directivities up to nearly 4 kHz, emphasizing the need for high-resolution, played musical instrumentdirectivity measurements.

Thumbnail of figure from publication
By Scott Bergeson, Matthew Schlitters, Matthew Miller, Ben Farley, and Devin Sieverts (et al.)
Abstract:

Understanding how plasmas thermalize when density gradients are steep remains a fundamental challenge in plasma physics, with direct implications for fusion experiments and astrophysical phenomena. Standard hydrodynamic models break down in these regimes, and kinetic theories make predictions that have never been directly tested. Here, we present the first detailed phase-space measurements of a strongly coupled plasma as it evolves from sharp density gradients to thermal equilibrium. Using laser-induced fluorescence imaging of an ultracold calcium plasma, we track the complete ion distribution function f(x,v,t)⁠. We discover that commonly used kinetic models (Bhatnagar–Gross–Krook and Lenard–Bernstein) overpredict thermalization rates, even while correctly capturing the initial counterstreaming plasma formation. Our measurements reveal that the initial ion acceleration response scales linearly with electron temperature, and that the simulations underpredict the initial ion response. In our geometry we demonstrate the formation of well-controlled counterpropagating plasma beams. This experimental platform enables precision tests of kinetic theories and opens new possibilities for studying plasma stopping power and flow-induced instabilities in strongly coupled systems.