News and Events

Thumbnail of The Fairy of Eagle Nebula
The dust sculptures of the Eagle Nebula are evaporating. As powerful starlight whittles away these cool cosmic mountains, the statuesque pillars that remain might be imagined as mythical beasts. Featured here is one of several striking dust pillars of the Eagle Nebula that might be described as a gigantic alien fairy. This fairy, however, is ten light years tall and spews radiation much hotter than common fire. The greater Eagle Nebula, M16, is actually a giant evaporating shell of gas and dust inside of which is a growing cavity filled with a spectacular stellar nursery currently forming an open cluster of stars. This great pillar, which is about 7,000 light years away, will likely evaporate away in about 100,000 years. The featured image is in scientifically re-assigned colors and was taken by the Earth-orbiting Hubble Space Telescope.
Mount Timpanogos with sky above
Check current conditions and historical weather data at the ESC.
Image for Dr. Adam Bennion bring Physics Education Research to BYU
Dr. Adam Bennion, hired Fall 2021, is an exciting addition to BYU's physics education program
Image for Particle Physics Comes to BYU with Dr. Chris Verhaaren
Dr. Chris Verhaaren, Particle Physicist, hired as new faculty member Fall 2022
Image for Dr. Aleksandr Mosenkov, new Astronomy faculty
Dr. Aleksandr Mosenkov, new faculty, looks forward to receiving some of the first data from the James Webb Space Telescope to study galaxy formation
Image for Dr. Tim Leishman retires from BYU
Dr. Leishman's time at BYU was filled with great teaching and profound mentoring
Image for Dr. John Colton: Table Tennis Champion
Dr. John Colton won the 2022 BYU intramural table tennis tournament
Image for Physics and Astronomy Student Advisory Board
We are looking for students who would like a leadership opportunity to be more involved with promoting student needs.
Image for Looking For New Faculty
The Department of Physics and Astronomy at Brigham Young University (BYU) in Provo, Utah, invites applications for a faculty position to begin August 2023. Qualifications include a Ph.D. in physics, astronomy or related field, ability to pursue a strong and independent research agenda, and a clear commitment to both undergraduate and graduate teaching.
Image for Mystery of Haumea's Formation Solved
BYU Physics and Astronomy student Benjamin Proudfoot recently published research in the prestigious journal Nature Communications that solves the mystery of the icy dwarf planet Haumea's formation.
Image for Capturing Images at the New Mexico Observatory
Students and faculty from theBYU Astronomy and Physics department captured images from space at an observatory in New Mexico to research explaining the evolution of the universe.

Selected Publications

Thumbnail of figure from publication
BYU Authors: Katrina Pedersen, Mark K. Transtrum, and Kent L. Gee, published in JASA Express Letters

Modeling outdoor environmental sound levels is a challenging problem. This paper reports on a validation study of two continental-scale machine learning models using geospatial layers as inputs and the summer daytime A-weighted L-50 as a validation metric. The first model was developed by the National Park Service while the second was developed by the present authors. Validation errors greater than 20 dBA are observed. Large errors are attributed to limited acoustic training data. Validation environments are geospatially dissimilar to training sites, requiring models to extrapolate beyond their training sets. Results motivate further work in optimal data collection and uncertainty quantification.

Thumbnail of figure from publication
BYU Authors: Branton J. Campbell, Harold T. Stokes, Tyler B. Averett, Shae Machlus, and Christopher J. Yost, published in J. Appl. Crystallogr.

A linear-algebraic algorithm for identifying rigid-unit modes in networks of interconnected rigid units has recently been demonstrated. This article presents a series of enhancements to the original algorithm, which greatly improve its conceptual simplicity, numerical robustness, computational efficiency and interpretability. The improvements include the efficient isolation of constraints, the observation of variable-block separability, the use of singular value decomposition and a quantitative measure of solution inexactness.

Thumbnail of figure from publication
BYU Authors: Aleksandr V Mosenkov, published in Mon. Not. Roy. Astron. Soc.

The geometric characteristics of dust clouds provide important information on the physical processes that structure such clouds. One of such characteristics is the 2D fractal dimension D of a cloud projected on to the sky plane. In previous studies, which were mostly based on infrared (IR) data, the fractal dimension of individual clouds was found to be in a range from 1.1 to 1.7 with a preferred value of 1.2-1.4. In this work, we use data from Stripe82 of the Sloan Digital Sky Survey to measure the fractal dimension of the cirrus clouds. This is done here for the first time for optical data with significantly better resolution as compared to IR data. To determine the fractal dimension, the perimeter-area method is employed. We also consider IR (IRAS and Herschel) counterparts of the corresponding optical fields to compare the results between the optical and IR. We find that the averaged fractal dimension across all clouds in the optical is < D > = 1.69(-0.05)(+0.05) which is significantly larger than the fractal dimension of its IR counterparts < D > = 1.38(-0.06)(+0.07). We examine several reasons for this discrepancy (choice of masking and minimal contour level, image and angular resolution, etc.) and find that for approximately half of our fields the different angular resolution (point spread function) of the optical and IR data can explain the difference between the corresponding fractal dimensions. For the other half of the fields, the fractal dimensions of the IR and visual data remain inconsistent, which can be associated with physical properties of the clouds, but further physical simulations are required to prove it.