News and Events

Thumbnail of The Cygnus Wall of Star Formation
The North America nebula on the sky can do what the North America continent on Earth cannot -- form stars. Specifically, in analogy to the Earth-confined continent, the bright part that appears as Central America and Mexico is actually a hot bed of gas, dust, and newly formed stars known as the Cygnus Wall. The featured image shows the star forming wall lit and eroded by bright young stars, and partly hidden by the dark dust they have created. The part of the North America nebula (NGC 7000) shown spans about 15 light years and lies about 1,500 light years away toward the constellation of the Swan (Cygnus).
Mount Timpanogos with sky above
Check current conditions and historical weather data at the ESC.
Image for Mystery of Haumea's Formation Solved
BYU Physics and Astronomy student Benjamin Proudfoot recently published research in the prestigious journal Nature Communications that solves the mystery of the icy dwarf planet Haumea's formation.
Image for Capturing Images at the New Mexico Observatory
Students and faculty from theBYU Astronomy and Physics department captured images from space at an observatory in New Mexico to research explaining the evolution of the universe.

Selected Publications

Thumbnail of figure from publication
BYU Authors: Benjamin Frandsen, published in Rev. Sci. Instrum.

The VERsatile DIffractometer will set a new standard for a world-class magnetic diffractometer with versatility for both powder and single crystal samples and capability for wide-angle polarization analysis. The instrument will utilize a large single-frame bandwidth and will offer high-resolution at low momentum transfers and excellent signal-to-noise ratio. A horizontal elliptical mirror concept with interchangeable guide pieces will provide high flexibility in beam divergence to allow for a high-resolution powder mode, a high-intensity single crystal mode, and a polarized beam option. A major science focus will be quantum materials that exhibit emergent properties arising from collective effects in condensed matter. The unique use of polarized neutrons to isolate the magnetic signature will provide optimal experimental input to state-of-the-art modeling approaches to access detailed insight into local magnetic ordering.

Thumbnail of figure from publication
BYU Authors: Tyler Westover, Scott Olsen, Zach Westhoff, Nick Morrill, Robert Davis, and Richard Vanfleet, published in Opt. Express

Traditional collimators typically require large optics and/or long pathlengths which makes miniaturization difficult. Carbon nanotube templated microfabrication offers a solution to pattern small 3D structures, such as parallel hole collimators. Here we present the characterization of a carbon nanotube parallel hole collimator design and its efficacy in visible and short wavelength infrared light. Comparison to geometric and far field diffraction models are shown to give a close fit, making this a promising technology for miniaturized diffuse light collimation.

Thumbnail of figure from publication
BYU Authors: Talmage Porter, Michael M. Vaka, Parker Steenblik, and Dennis Della Corte, published in Comm. Chem.

Molten salts are important thermal conductors used in molten salt reactors and solar applications. To use molten salts safely, accurate knowledge of their thermophysical properties is necessary. However, it is experimentally challenging to measure these properties and a comprehensive evaluation of the full chemical space is unfeasible. Computational methods provide an alternative route to access these properties. Here, we summarize the developments in methods over the last 70 years and cluster them into three relevant eras. We review the main advances and limitations of each era and conclude with an optimistic perspective for the next decade, which will likely be dominated by emerging machine learning techniques. This article is aimed to help researchers in peripheral scientific domains understand the current challenges of molten salt simulation and identify opportunities to contribute.