News and Events

Thumbnail of NGC 1360: The Robin's Egg Nebula
This pretty nebula lies some 1,500 light-years away, its shape and color in this telescopic view reminiscent of a robin's egg. The cosmic cloud spans about 3 light-years, nestled securely within the boundaries of the southern constellation of the Furnace (Fornax). Recognized as a planetary nebula, egg-shaped NGC 1360 doesn't represent a beginning, though. Instead, it corresponds to a brief and final phase in the evolution of an aging star. In fact, visible at the center of the nebula, the central star of NGC 1360 is known to be a binary star system likely consisting of two evolved white dwarf stars, less massive but much hotter than the Sun. Their intense and otherwise invisible ultraviolet radiation has stripped away electrons from the atoms in their mutually surrounding gaseous shroud. The blue-green hue inside of NGC 1360 seen here is the strong emission produced as electrons recombine with doubly ionized oxygen atoms. Celestial Surprise: What picture did APOD feature on your birthday? (post 1995)
Mount Timpanogos with sky above
Temp:  51 °FN2 Boiling:75.9 K
Humidity: 47%H2O Boiling:   368.3 K
Pressure:85 kPaSunrise6:11 AM
Sunlight:233 W/m²   Sunset8:35 PM
Image for Dr. Stephens’ Sabbatical to University of Arizona
Dr. Stephens participated in a research project at the University of Arizona focused on studying brown dwarfs using the James Webb Space Telescope (JWST).
Image for BYU Women Represent at CUWiP 2024
21 women student attend conference at Montana State University, where students engaged in keynote speeches, panels, and research presentations.
Image for Dr. John Colton’s Sabbatical to the National Renewable Energy Laboratory
Dr. John Colton embarked on a six-month sabbatical at the National Renewable Energy Laboratory (NREL) in Colorado to explore the use of terahertz radiation in probing the chiral properties of hybrid perovskite materials, a research area previously unfamiliar to him.
Image for Nathan Powers, Updated labs and AAPT lab committee work
Dr. Powers initiated the effort to update BYU’s physics undergraduate lab curriculum in 2015. The revamped curriculum, aimed at teaching students how to construct knowledge from experiments.

Selected Publications

Thumbnail of figure from publication
By Chao Pang, Benjamin T. Karlinsey, Megan Ward, Roger G. Harrison, Robert C. Davis, and Adam T. Woolley
Abstract:

DNA-templated nanofabrication presents an innovative approach to creating self-assembled nanoscale metal–semiconductor-based Schottky contacts, which can advance nanoelectronics. Herein, we report the successful fabrication of metal–semiconductor Schottky contacts using a DNA origami scaffold. The scaffold, consisting of DNA strands organized into a specific linear architecture, facilitates the competitive arrangement of Au and CdS nanorods, forming heterojunctions, and addresses previous limitations in low electrical conductance making DNA-templated electronics with semiconductor nanomaterials. Electroless gold plating extends the Au nanorods and makes the necessary electrical contacts. Tungsten electrical connection lines are further created by electron beam-induced deposition. Electrical characterization reveals nonlinear Schottky barrier behavior, with electrical conductance ranging from 0.5 × 10–4 to 1.7 × 10–4 S. The conductance of these DNA-templated junctions is several million times higher than with our prior Schottky contacts. Our research establishes an innovative self-assembly approach with applicable metal and semiconductor materials for making highly conductive nanoscale Schottky contacts, paving the way for the future development of DNA-based nanoscale electronics.

Thumbnail of figure from publication
By Jay C. Spendlove, Tracianne B. Neilsen, and Mark K. Transtrum
Abstract:

The model manifold, an information geometry tool, is a geometric representation of a model that can quantify the expected information content of modeling parameters. For a normal-mode sound propagation model in a shallow ocean environment, transmission loss (TL) is calculated for a vertical line array and model manifolds are constructed for both absolute and relative TL. For the example presented in this paper, relative TL yields more compact model manifolds with seabed environments that are less statistically distinguishable than manifolds of absolute TL. This example illustrates how model manifolds can be used to improve experimental design for inverse problems.

Thumbnail of figure from publication
By Darin Ragozzine (et al.)
Abstract:

We present a new catalog of Kepler planet candidates that prioritizes accuracy of planetary dispositions and properties over uniformity. This catalog contains 4376 transiting planet candidates, including 1791 residing within 709 multiplanet systems, and provides the best parameters available for a large sample of Kepler planet candidates. We also provide a second set of stellar and planetary properties for transiting candidates that are uniformly derived for use in occurrence rate studies. Estimates of orbital periods have been improved, but as in previous catalogs, our tabulated values for period uncertainties do not fully account for transit timing variations (TTVs). We show that many planets are likely to have TTVs with long periodicities caused by various processes, including orbital precession, and that such TTVs imply that ephemerides of Kepler planets are not as accurate on multidecadal timescales as predicted by the small formal errors (typically 1 part in 10(6) and rarely >10(-5)) in the planets' measured mean orbital periods during the Kepler epoch. Analysis of normalized transit durations implies that eccentricities of planets are anticorrelated with the number of companion transiting planets. Our primary catalog lists all known Kepler planet candidates that orbit and transit only one star; for completeness, we also provide an abbreviated listing of the properties of the two dozen nontransiting planets that have been identified around stars that host transiting planets discovered by Kepler.

Thumbnail of figure from publication
By M. D. Joner and G. Apolonio (et al.)
Abstract:

Context. The BL Lac object 3C 371 was observed by the Transiting Exoplanet Survey Satellite (TESS) for approximately a year, between July 2019 and July 2020, with an unmatched two-minute imaging cadence. In parallel, the Whole Earth Blazar Telescope (WEBT) Collaboration organized an extensive observing campaign, providing three years of continuous optical monitoring between 2018 and 2020. These datasets allow for a thorough investigation of the variability of the source. Aims. The goal of this study is to evaluate the optical variability of 3C 371. Taking advantage of the remarkable cadence of TESS data, we aim to characterize the intra-day variability (IDV) displayed by the source and identify its shortest variability timescale. With this estimate, constraints on the size of the emitting region and black hole mass can be calculated. Moreover, WEBT data are used to investigate long-term variability (LTV), including in terms of the spectral behavior of the source and the polarization variability. Based on the derived characteristics, we aim to extract information on the origin of the variability on different timescales. Methods. We evaluated the variability of 3C 371 by applying the variability amplitude tool, which quantifies variability of the emission. Moreover, we employed common tools, such as ANOVA (ANalysis Of VAariance) tests, wavelet and power spectral density (PSD) analyses to characterize the shortest variability timescales present in the emission and the underlying noise affecting the data. We evaluated the short- and long-term color behavior to understand its spectral behavior. The polarized emission was analyzed, studying its variability and possible rotation patterns of the electric vector position angle (EVPA). Flux distributions of the IDV and LTV were also studied with the aim being to link the flux variations to turbulent and/or accretion-disk-related processes. Results. Our ANOVA and wavelet analyses reveal several entangled variability timescales. We observe a clear increase in the variability amplitude with increasing width of the time intervals evaluated. We are also able to resolve significant variations on timescales of as little as similar to 0.5 h. The PSD analysis reveals a red-noise spectrum with a break at IDV timescales. The spectral analysis shows a mild bluer-when-brighter (BWB) trend on long timescales. On short timescales, mixed BWB, achromatic and redder-when-brighter signatures can be observed. The polarized emission shows an interesting slow EVPA rotation during the flaring period, where a simple stochastic model can be excluded as the origin with a 3 sigma significance. The flux distributions show a preference for a Gaussian model for the IDV, and suggest it may be linked to turbulent processes, while the LTV is better represented by a log-normal distribution and may have a disk-related origin.

Thumbnail of figure from publication
Abstract:

Chiral multiferroics offer remarkable capabilities for controlling quantum devices at multiple levels. However, these materials are rare due to the competing requirements of long-range orders and strict symmetry constraints. In this study, we present experimental evidence that the coexistence of ferroelectric, magnetic orders, and crystallographic chirality is achievable in hybrid organic-inorganic perovskites [(R/S)-β-methylphenethylamine]2CuCl4. By employing Landau symmetry mode analysis, we investigate the interplay between chirality and ferroic orders and propose a novel mechanism for chirality transfer in hybrid systems. This mechanism involves the coupling of non-chiral distortions, characterized by defining a pseudo-scalar quantity, 

 (

 represents the ferroelectric displacement vector and 

 denotes the ferro-rotational vector), which distinguishes between (R)- and (S)-chirality based on its sign. Moreover, the reversal of this descriptor’s sign can be associated with coordinated transitions in ferroelectric distortions, Jahn-Teller antiferro-distortions, and Dzyaloshinskii-Moriya vectors, indicating the mediating role of crystallographic chirality in magnetoelectric correlations.

Thumbnail of figure from publication
By Jason Meziere, Abigail Hardy Carpenter, and Richard L. Sandberg (et al.)
Abstract:

Coherent x-ray imaging and scattering from accelerator based sources such as synchrotrons continue to impact biology, medicine, technology, and materials science. Many synchrotrons around the world are currently undergoing major upgrades to increase their available coherent x-ray flux by approximately two orders of magnitude. The improvement of synchrotrons may enable imaging of materials in operando at the atomic scale which may revolutionize battery and catalysis technologies. Current algorithms used for phase retrieval in coherent x-ray imaging are based on the projection onto sets method. These traditional iterative phase retrieval methods will become more computationally expensive as they push towards atomic resolution and may struggle to converge. Additionally, these methods do not incorporate physical information that may additionally constrain the solution. In this work, we present an algorithm which incorporates molecular dynamics into Bragg coherent diffraction imaging (BCDI). This algorithm, which we call PRAMMol (Phase Retrieval with Atomic Modeling and Molecular Dynamics) combines statistical techniques with molecular dynamics to solve the phase retrieval problem. We present several examples where our algorithm is applied to simulated coherent diffraction from 3D crystals and show convergence to the correct solution at the atomic scale.