BYU study adds a ‘twist’ to stars’ death throes

Thirty-seven miles apart, twin stars orbit each other on a high-speed collision course. In a matter of milliseconds, the stars collide in spectacular fashion, spewing out radiation and forming an object so massive it collapses under its own weight and becomes a black hole.

Simulations of this stellar collision play out in Brigham Young University's Fulton Supercomputing Laboratory on a machine named MaryLou4, listed by Top500 as the 106th fastest computer in the world. The simulations are funded by the National Science Foundation and orchestrated by astrophysicists in search of the cause of a type of gamma-ray burst, the brightest flashes seen in space.

In the scientific journal Physical Review Letters, researchers from BYU demonstrate one important part of solving the riddle: Don’t overlook stars’ magnetic fields.

“Even though most or all stars have a magnetic field, a lot of prior research does not account for its effects during the final stages of the stars’ lives,” said BYU astrophysicist Eric Hirschmann. “Our results show that in certain circumstances the magnetic fields do play a role in the evolution of systems with two stars.”

More than half of all stars are twins that share a solar system, such as the pair depicted on Luke Skywalker’s planet, Tatooine, in Star Wars. If at least one of the stars is very large, then both will explode in a supernova when they run out of fuel. The burned-out cores left behind, called neutron stars, are so dense that they cause gravitational ripples in space as predicted by Einstein’s theory of general relativity.

Hirschmann and BYU colleagues David Neilsen and Matthew Andersen, along with collaborators from Louisiana State University and Long Island University, focused on what happens when two neutron stars pull each other near. They found the stars’ magnetic fields slow down the merger, allowing one extra orbit during the final 12 milliseconds.

While one more orbit may not sound like much, the delay increases the energy radiated by gravitational waves, increasing the likelihood that planned technology may pick up the signals under the right conditions.

Astronomers base their interpretation of space signals on wave signatures generated by simulations. The more accurate the simulation, the closer science comes to explaining deep-space mysteries like gamma-ray bursts.

“The origin of gamma-ray bursts has been a mystery for 40 years, and the fireballs created in the mergers of neutron star pairs or neutron star-black hole pairs have emerged as the most likely sources of short gamma-ray bursts,” said John Friedman, a physics professor at the University of Wisconsin-Milwaukee who was not involved in the study. “The code developed by this collaboration brings us one step closer to resolving this mystery.”

The extra orbit seen in the BYU simulation also gave the stars’ gravity more time to rip material away from each other before they merged. While the end result of this simulation was a black hole, the researchers suggest merging stars with very strong magnetic fields may meet a different fate.

“In a way, the magnetic field adds a new mechanism to tear the stars apart,” Neilsen said. “If the stars begin to tear apart when they are still widely separated, and they shed matter, it may prevent the black hole from forming.”

Writer: Irasema Romero

 

More Information on This Article

Article Source/Further Information

News and Events

Image for Rocket Noise and Bird Songs
Hart, Gee, and their research group study the impact of rocket noise on wildlife
Image for Dr. Ragozzine's Nice, France Obersvatoire Sabbatical
Darin Ragozzine collaborates with leading planetary scientists in France
Image for New Faculty Member, Dr. Greg Francis
Dr. Greg Francis joins faculty, specializing in Physics Education
Image for Steve Summers' Insights for Students
Alumni Steve Summers answers interview questions for current students
Image for Wesley Morgan Doubles AP Physics Enrollment
Y Magazine recognizes finalist for the 2023 National Science Foundation’s Presidential Award of Excellence in Mathematics and Science Teaching
Image for Dr. John Colton’s Sabbatical to the National Renewable Energy Laboratory
Dr. John Colton embarked on a six-month sabbatical at the National Renewable Energy Laboratory (NREL) in Colorado to explore the use of terahertz radiation in probing the chiral properties of hybrid perovskite materials, a research area previously unfamiliar to him.
Image for BYU Women Represent at CUWiP 2024
21 women student attend conference at Montana State University, where students engaged in keynote speeches, panels, and research presentations.
Image for Nathan Powers, Updated labs and AAPT lab committee work
Dr. Powers initiated the effort to update BYU’s physics undergraduate lab curriculum in 2015. The revamped curriculum, aimed at teaching students how to construct knowledge from experiments.
Image for Dr. Stephens’ Sabbatical to University of Arizona
Dr. Stephens participated in a research project at the University of Arizona focused on studying brown dwarfs using the James Webb Space Telescope (JWST).
Image for Adam Fennimore's Insights for Students
Alumni Adam Fennimore shares career insights for current students
Image for Society of Physics Students Awarded Outreach Grant
BYU's SPS is selected for Marsh Award for their outreach plan with Boys & Girls Club