Drs. Campbell and Stokes Awarded Top Crystallographic Association Award

Branton Campbell (left) and Harold Stokes (right)

In July 2025, Drs. Branton Campbell and Harold Stokes (BYU Emeritus Professor) will receive the Kenneth N. Trueblood Award from the American Crystallographic Association for exceptional achievement in computational crystallography. This award is given every 3 years to recognize scientists who have significantly influenced the structural science community through their development of computer programs that enable transformative new ways of studying the structure of materials and molecules on atomic length scales. The structural science community consists of many different scientists, including solid-state physicists/chemists, materials scientists, protein crystallographers, and more. The award manifests the huge impact of Campbells’ and Stokes' research program on the structural science community. 

Campbell was trained as an experimentalist but switched to purely computational studies after his collaborative success in developing new computational tools for characterizing crystal phase transitions, which are now part of the ISOTROPY Software Suite of computational crystallography tools. Due to the powerful utility of these tools, other scientists frequently ask for his help in modeling materials, which led him to focus on computational work for most of his career.

Campbell speaks highly about his many years of experience working with Stokes. They began their work together when Stokes was Campbell’s undergraduate advisor, and they later worked together closely as collaborators. Campbell commented that Stokes is “just the best collaborator…if you give him an interesting problem, he tackles it quickly and sends it right back to you.” He also describes Stokes as being able to do very careful work. These two friends and research partners still have an ongoing collaboration even though Stokes retired in 2012, later serving a mission for The Church of Jesus Christ of Latter-day Saints in Scotland.

This partnership has led to some incredible science. What began as a potential solution to a specific crystallographic modeling problem has blossomed into the field that Campbell and Stokes pioneer today. Together they develop methods—using group representation theory—that offer an effective way of organizing the various ways to break symmetry in crystalline materials. These symmetries lead to many of their observable properties. Externally altering the material's structure (e.g. by lowering the temperature) can break symmetries and change its properties drastically. Predicting the effects of symmetry breaking is an arduous and extensive task; it requires in-depth knowledge of the material’s intrinsic structure and the local electronic environment. The ISOTROPY computational suite has tools that relate the possible ways for symmetries to break and predicts the associated structural changes. The image pictured below depicts an example crystal structure (a cooperative pattern of polyhedral rotations) in tetragonal tungsten-bronze modeled using ISODISTORT and ISOTILT (within the ISOTROPY suite).

A pattern of purple and red squaresAI-generated content may be incorrect.

The work done by Campbell and Stokes has left a lasting impact on the crystallography community that continues to influence modern research. Their pioneering work has not only advanced the abilities of crystallographic analysis but also continues to inspire a new generation of scientists. The Kenneth N. Trueblood Award stands as a fitting recognition of their partnership and groundbreaking contributions to science.


Student Authors: Trigg Randall, Amelia Poulin, Levi Hancock, and Abi Mae Carpenter
Edited by Brian Anderson


News and Events

Image for BYU Women Represent at CUWiP 2024
21 women student attend conference at Montana State University, where students engaged in keynote speeches, panels, and research presentations.
Image for Dr. Stephens’ Sabbatical to University of Arizona
Dr. Stephens participated in a research project at the University of Arizona focused on studying brown dwarfs using the James Webb Space Telescope (JWST).
Image for Drs. Campbell and Stokes Awarded Top Crystallographic Association Award
In July 2025, Drs. Branton Campbell and Harold Stokes (BYU Emeritus Professor) will receive the Kenneth N. Trueblood Award from the American Crystallographic Association for exceptional achievement in computational crystallography.
Image for New Weather Station
A group of undergraduate students braved the heat and heights of the ESC roof to install a new weather station. The station is up and running, and will hopefully record data for years to come.
Image for Study analyzes distant Kuiper Belt object with NASA's Hubble data
Using data from NASA's Hubble Space Telescope, a new study suggests that an object previously thought to be a binary system may be a rare triple system of orbiting bodies.
Image for BYU’s Rising Astronomers Take Center Stage at the Winter AAS Conference
In early January 2025, a group of 16 students from Brigham Young University’s Physics & Astronomy Department showcased their research at the prestigious American Astronomical Society (AAS) in National Harbor, Maryland.
Image for Acoustics group studies the roar of SpaceX's Starship
Acoustics faculty and students measure the thunderous noise of the world’s most powerful rocket, exploring its impact on communities and the environment.
Image for Dr. Kent Gee Receives Top faculty Award
Dr. Kent Gee has been named the recipient of the Karl G. Maeser Distinguished Faculty Lecturer Award
Image for Drs. Davis and Vanfleet Receive 2024 BYU Technology Transfer Awards
BYU Physics and Astronomy Professors Dr. Davis and Dr. Vanfleet recently received the 2024 award for outstanding achievement in technology transfer from the BYU Technology Transfer Office.
Image for Particle Physics Class
After 3 years of being offered as 513R, elementary particle physics is finally an official course and accepted for credit in the physics major!
Image for Acoustics Major Officially Offered at BYU
The BYU Physics & Astronomy department recently introduced the Applied Physics: Acoustics degree.
Image for A Practical Scientist’s Field Guide to Dealing with Science and Religion.
Dr. Michael Ware hopes to help students develop the skills to navigate discussion of science and religion
Image for Dr. John Colton’s Sabbatical to the National Renewable Energy Laboratory
Dr. John Colton embarked on a six-month sabbatical at the National Renewable Energy Laboratory (NREL) in Colorado to explore the use of terahertz radiation in probing the chiral properties of hybrid perovskite materials, a research area previously unfamiliar to him.
Image for Nathan Powers, Updated labs and AAPT lab committee work
Dr. Powers initiated the effort to update BYU’s physics undergraduate lab curriculum in 2015. The revamped curriculum, aimed at teaching students how to construct knowledge from experiments.