Tiny cupid proof that BYU students love nanotechnology

Got a “little crush” on someone this Valentine’s Day? Maybe you’ve been hit by a little arrow belonging to this cupid made from carbon nanotubes by Brigham Young University physics students.

You don’t have to be a science lover to be amazed at how they build on such a small scale. First, they put a pattern of microscopic iron “seeds” onto a plate. A blast of heated gas causes a miniature forest of carbon nanotubes to spring up. Each nanotube measures about 20 atoms across and is 99 percent air.

And while love is in the air, both love and the nano-cupid are fragile.

“It’s a really fragile structure at this point – blowing on it or touching it would destroy it,” said BYU physics professor Robert Davis.

To strengthen both the cupid and other micro-machines, Davis and his colleague Richard Vanfleet coat the nanostructures with metals and other materials. That opens the door to all kinds of uses.

For example, the researchers can design and produce filters with higher precision than other methods. Their process makes equally-sized holes that are about one-tenth the circumference of a human hair. And unlike other micro-filters, the holes are evenly spaced throughout the filter.

“One application is in the area of compressed gases like oxygen in the areas of health care, mining operations or scuba diving,” Davis said. “Compressed gas systems can generate particles that need to be filtered out.”

Lawrence Barrett, a junior studying physics, recently took the concept to a business plan competition and was crowned Utah’s “Innovation Idol.” His winning presentation almost didn’t get off the ground. Barrett first learned about the competition just 48 hours before the entry deadline.

“I worked on the proposal through the night and Dr. Davis edited it for me on a Saturday,” Barrett said.

That level of mentoring is what convinced Barrett to become a physics major during his freshman year. Several faculty and students recruited him to join their research groups. Initially Lawrence worked on a different team that builds electronic circuits using DNA. After his Church mission he switched from circuitry to micro-machines.

“The funnest part of this project is that what we do, our angle of solving micro-mechanical problems, is so different than what anyone else has done,” Barrett said. “We’re not just making small improvements.”

The researchers’ work has appeared in the Journal of Micromechanics and Microengineering, Journal of Chromatography A, Advanced Functional Materials and the Journal of Microelectromechanical SystemsWhile BYU has licensed the technology for use in the chemical separation industry, they are now looking for strategic partners in the field of filtration. 

See more of their work at nano.byu.edu

More Information on This Article

Article Source/Further Information

News and Events

Image for BYU’s Rising Astronomers Take Center Stage at the Winter AAS Conference
In early January 2025, a group of 16 students from Brigham Young University’s Physics & Astronomy Department showcased their research at the prestigious American Astronomical Society (AAS) in National Harbor, Maryland.
Image for Acoustics group studies the roar of SpaceX's Starship
Acoustics faculty and students measure the thunderous noise of the world’s most powerful rocket, exploring its impact on communities and the environment.
Image for Astronomers Discover New Course
This winter, ten students in BYU’s new “Advanced Planetary Astrophysics” taught by Darin Ragozzine course gained hands-on experience in planetary science research, mastering interdisciplinary skills to prepare for future careers in astronomy.
Image for New Applied Physics Major with an Emphasis in Data Science
Starting Fall 2025, BYU will offer a new Applied Physics: Data Science major that combines rigorous physics training with data science skills to prepare students for the growing demand in data-driven careers.
Image for The Physics of Life
BYU's new Biological Physics course introduces students to the physics behind biological processes, fostering interdisciplinary skills to tackle complex biological questions.
Image for Dr. Kent Gee Receives Top faculty Award
Dr. Kent Gee has been named the recipient of the Karl G. Maeser Distinguished Faculty Lecturer Award
Image for New Acoustics Major
The BYU Physics & Astronomy department recently introduced the Applied Physics: Acoustics degree.
Image for Chris Verhaaren Creates Particle Physics Class
After 3 years of being offered as 513R, elementary particle physics is finally an official course and accepted for credit in the physics major!
Image for Drs. Davis and Vanfleet Receive Technology Transfer Award
BYU Physics and Astronomy Professors Dr. Davis and Dr. Vanfleet recently received the 2024 award for outstanding achievement in technology transfer from the BYU Technology Transfer Office.
Image for A Practical Scientist’s Field Guide to Dealing with Science and Religion.
Dr. Michael Ware hopes to help students develop the skills to navigate discussion of science and religion
Image for Kent Gee Forum: Lessons from Noise, Crackle to Calm
This year’s Karl G. Maeser Distinguished Faculty Lecturer, Kent Gee, delivered his forum address on the science of sound and how he and BYU students have contributed to significant research in the acoustics industry.
Image for Campbell and Stokes Receive Crystallographic Association Award
In July 2025, Drs. Branton Campbell and Harold Stokes (BYU Emeritus Professor) will receive the Kenneth N. Trueblood Award from the American Crystallographic Association for exceptional achievement in computational crystallography.
Image for New ESC Weather Station
A group of undergraduate students braved the heat and heights of the ESC roof to install a new weather station. The station is up and running, and will hopefully record data for years to come.
Image for Study analyzes distant Kuiper Belt object with NASA's Hubble data
Using data from NASA's Hubble Space Telescope, a new study suggests that an object previously thought to be a binary system may be a rare triple system of orbiting bodies.