Student’s Nanocrystals Make Him a Wanted Man

From an underground lab on campus, an undergraduate student discovered how to harvest more energy from sunlight.

Stephen Erickson and fellow student Trevor Smith conducted and published research about how nano-sized crystals can improve solar panels.

Their lab experiments suggest that solar cells based on nanocrystals of titanium, iron, cobalt and manganese could achieve up to 38 percent solar energy conversion.

At the same time, Stephen is seeing even higher conversion rates with his graduate school applications. So far he’s received offers to seek a Ph.D. from Harvard, Stanford, Caltech, Maryland, Colorado and UC Berkeley. And he credits his good fortune directly to the scientific work he’s done as an undergraduate.

“When applying to top schools, everyone has good grades and test scores, so admissions committees weight research experience very heavily in their decision making process,” Stephen said.

A Solar Power Problem

Solar panels provide reliable and clean energy, but they don’t do it very efficiently. Most solar cells rely on silicon-based semiconductors, which harvest less than 29 percent of the available energy from sunlight. That’s because silicon-based cells only convert a portion of the light spectrum into electricity. The light from wavelengths that are too long or too short is mostly unusable.

The Innovation

Chemistry professor Richard Watt is a high-energy guy with a high-energy name. For several years his research has centered on a protein called ferritin. Ferritin normally stores iron molecules. It’s also hollow.

Watt and his students have been using ferritin as capsules in which they grow tiny crystals. The idea is to grow crystals that capture light that silicon misses.

“We started off with one particle that could only absorb blue light and all the other light was wasted,” said Watt, a chemistry professor who mentored the students on the project. “The thought was if we could put another particle that could absorb red wavelengths and another that would absorb yellow and another green, we would be able to harvest most, if not all, of the energy from light.”

That hope became possible when Watt joined forces with physics professor John Colton. In his lab, they can finely tune these nanocrystals to capture very specific wavelengths of light. This lets them make combinations that work in a coordinated fashion.

The Future

As they write in the journal Nanotechnology, the researchers are still looking to fill a gap that silicon normally covers on the light spectrum. If they can grow a nanoparticle similar to silicon, the theoretical conversion rate climbs to 51 percent. The team also needs to design solar cells that can house four or five different types of crystals. In the lab experiments thus far, they’ve tested one material at a time.

Stephen’s future includes graduating in April as a double major (physics and mathematics). He’ll also make a tough decision on where he’ll enroll for grad school.

Mentored research opportunities are a big reason why BYU is ranked so highly as a Ph.D. launch pad. According to the National Science Foundation, BYU ranks fifth in the country for the number of graduates who go on to receive doctorate degrees.

More Information on This Article

Article Source/Further Information

News and Events

Image for Chris Verhaaren Creates Particle Physics Class
After 3 years of being offered as 513R, elementary particle physics is finally an official course and accepted for credit in the physics major!
Image for Drs. Davis and Vanfleet Receive Technology Transfer Award
BYU Physics and Astronomy Professors Dr. Davis and Dr. Vanfleet recently received the 2024 award for outstanding achievement in technology transfer from the BYU Technology Transfer Office.
Image for A Practical Scientist’s Field Guide to Dealing with Science and Religion.
Dr. Michael Ware hopes to help students develop the skills to navigate discussion of science and religion
Image for Kent Gee Forum: Lessons from Noise, Crackle to Calm
This year’s Karl G. Maeser Distinguished Faculty Lecturer, Kent Gee, delivered his forum address on the science of sound and how he and BYU students have contributed to significant research in the acoustics industry.
Image for Campbell and Stokes Receive Crystallographic Association Award
In July 2025, Drs. Branton Campbell and Harold Stokes (BYU Emeritus Professor) will receive the Kenneth N. Trueblood Award from the American Crystallographic Association for exceptional achievement in computational crystallography.
Image for New ESC Weather Station
A group of undergraduate students braved the heat and heights of the ESC roof to install a new weather station. The station is up and running, and will hopefully record data for years to come.
Image for Study analyzes distant Kuiper Belt object with NASA's Hubble data
Using data from NASA's Hubble Space Telescope, a new study suggests that an object previously thought to be a binary system may be a rare triple system of orbiting bodies.
Image for BYU’s Rising Astronomers Take Center Stage at the Winter AAS Conference
In early January 2025, a group of 16 students from Brigham Young University’s Physics & Astronomy Department showcased their research at the prestigious American Astronomical Society (AAS) in National Harbor, Maryland.
Image for Acoustics group studies the roar of SpaceX's Starship
Acoustics faculty and students measure the thunderous noise of the world’s most powerful rocket, exploring its impact on communities and the environment.
Image for Gus Hart Receives the Karl G. Maeser Research and Creative Arts Award
Dr. Gus Hart received the 2024 Karl G. Maeser Research and Creative Arts Award for his work in computational material science and his continued innovation in computational methods.
Image for Astronomers Discover New Course
This winter, ten students in BYU’s new “Advanced Planetary Astrophysics” taught by Darin Ragozzine course gained hands-on experience in planetary science research, mastering interdisciplinary skills to prepare for future careers in astronomy.
Image for New Applied Physics Major with an Emphasis in Data Science
Starting Fall 2025, BYU will offer a new Applied Physics: Data Science major that combines rigorous physics training with data science skills to prepare students for the growing demand in data-driven careers.
Image for The Physics of Life
BYU's new Biological Physics course introduces students to the physics behind biological processes, fostering interdisciplinary skills to tackle complex biological questions.
Image for Dr. Kent Gee Receives Top faculty Award
Dr. Kent Gee has been named the recipient of the Karl G. Maeser Distinguished Faculty Lecturer Award
Image for New Acoustics Major
The BYU Physics & Astronomy department recently introduced the Applied Physics: Acoustics degree.