Physics Alumnus Improves Radar Systems

Photo courtesy of Derek Hullinger

“Physics” and “easier to understand” aren’t phrases that ordinarily appear together, but that’s what BYU alumnus Derek Hullinger is trying to accomplish.

“I love to make things better,” Hullinger said. “I like saying, ‘We could make that just a little bit faster by doing this,’ or ‘We could make it a little bit easier to understand by doing this.’”

Hullinger’s interest in physics started before he was a student at BYU.

“When I was in high school, I took a physics class and absolutely loved it,” Hullinger said. “I liked math before that, but I loved how physics showed me how I could use math to explain things that you see in the world around you.”

That initial interest pushed Hullinger (BS ‘97 Physics, MS ’00 Physics, Brigham Young University; PhD ’05 Physics, University of Maryland) to pursue three degrees and eventually a career in physics.

Shortly after receiving his bachelor’s in physics, Hullinger worked with NASA on the Swift Burst Alert Telescope project. The telescope’s purpose was to study gamma ray bursts, or powerful explosions of stars in distant galaxies.

“My job was to come up with a mathematical model to describe the relationship between the energy of each gamma-ray photon that is absorbed by the telescope’s detectors and the electrical signal produced by the detectors,” Hullinger said.

Hullinger currently works as a systems engineer at IMSAR. IMSAR develops and manufactures Synthetic Aperture Radars (SAR), a radar system that can produce detailed images of large areas.

“Imagine this radar sitting in the sky, 3,000 feet up,” Hullinger said. “It sends out a pulse of microwave radiation, and the pulse bounces off anything it comes in contact with. The ‘echoes’ come back to the radar and tell it how far away different objects are.”

Hullinger’s work at IMSAR involves developing new types of radar systems and improving those that have already been developed.

“Our company has found a way to make these devices incredibly small, incredibly low power, and incredibly cost effective,” Hullinger said. “They can be flown on small, unmanned vehicles, which is a first for synthetic aperture radar.”

Hullinger said his time at BYU prepared him for the work he’s done, particularly by teaching him how to learn.

“When I first began working at IMSAR, I didn’t know anything about radar systems,” Hullinger said. “But I did know how to learn about radar systems.”

More Information on This Article

Article Source/Further Information

News and Events

Image for Mystery of Haumea's Formation Solved
BYU Physics and Astronomy student Benjamin Proudfoot recently published research in the prestigious journal Nature Communications that solves the mystery of the icy dwarf planet Haumea's formation.
Image for Capturing Images at the New Mexico Observatory
Students and faculty from theBYU Astronomy and Physics department captured images from space at an observatory in New Mexico to research explaining the evolution of the universe.
Image for Planetarium Updates
A new and improved planetarium experience
Image for How Physics Students Thrive in a Pandemic
Ways Students have Adapted to the Pandemic
Image for New Professor Dr. Benjamin Boizelle
Dr. Boizelle brings radio astronomy to the department
Image for Dr. Dennis Della Corte launches Consortium of Molecular Design
Dr. Della Corte's computational biophysics is the heart of the new Consortium of Molecular Design
Image for Dr. Scott Sommerfeldt Awarded an ASA Silver Medal
Dr. Scott Sommerfeldt awarded the Silver Medal of the Acoustical Society of America for work in active noise control
Image for Sabbatical at Cambridge for Dr. Gus Hart
Dr. Hart's sabbatical propels work on new techniques for constructing interatomic potentials
Image for Dr. Steve Turley -NSF Program Officer
Dr. Turley influences the future of physics education during his time as program officer for education division of the National Science Foundation