Hottest known planet discovery published in Nature

It’s hot. Seriously hot. Not creeping-into-the-90s-crank-up-the-AC hot: nearly-8,000-degrees-Fahrenheit hot.

KELT-9b is an exoplanet, but its dayside temp beats most stars in our galaxy — and comes close to our sun’s 10,000 degrees. A paper announcing 9b’s discovery, published this week in top science journal Nature, highlights some of the extreme characteristics of both the planet and its host star, KELT-9.

“The big deal about KELT-9b is that it is a planet in a close orbit around a really large and hot host star,” said BYU physics and astronomy research professor and study coauthor Michael Joner. “Everything we will measure about the atmosphere of KELT-9b in the future will represent extreme values and the limits of what is possible for an atmosphere.”

Joner and fellow BYU physics and astronomy professor Denise Stephens are project architects on the Kilodegree Extremely Little Telescope (KELT) survey, spearheaded by researchers at The Ohio State University and Vanderbilt and comprised of more than 20 partner institutions. In the past four years, the group has announced the discovery of 19 exoplanets, and Joner anticipates a few more coming in the next year.

In February the group published a paper on KELT-16b, a so-called “hot Jupiter” recognized for its 4,000-degree heat, size (clocking in at 1.5 times the size of Jupiter) and wonky atmospherics. KELT-9b, said Joner, “is an even more extreme example” than 16b. There’s its hotter-than-any-other-known-planet heat, its size (close to three times the mass of Jupiter), and the massive amount of radiation it receives from a host star that is almost double the temperature of our sun and more than double its size.

“The long-term prospects for life — or real estate, for that matter — on KELT-9b are not looking good,” said Keivan Stassun, a Vanderbilt professor of physics and astronomy and study co-director.

Though the KELT team has been identifying planets whose origins, futures and atmospheres differ dramatically from the earth, Stephens said, understanding the extremes can ultimately help scientists better understand our own planet.

“We really want to find an earth, but the technology is not quite here,” she said. “But everything we learn from the KELT research ties to improving the technology to the point where someday you might be able to image an earth-like object.”

On BYU’s end, Stephens and Joner have worked with a handful of students to help confirm exoplanet candidates identified by the two tiny KELT survey telescopes. Recent grads Kyle Matt and Clement Gaillard are listed as coauthors on the Nature paper, which Matt calls “pretty exciting” — and a nice payoff for many a late night spent tracking the night sky from BYU’s Orson Pratt Observatory. Matt will begin a physics Ph.D. program in the fall, and Gaillard is teaching physics in China.

For Joner, who observes exoplanet candidates from BYU’s West Mountain Observatory, the findings deepen a passion he’s had since childhood. He grew up watching moon landings and dreaming about space exploration, and as a BYU physics student in the late ’70s and early ’80s, remembers talking to his peers about the possibility of other planets outside of our solar system. Since that time, he notes, there have been several thousand planetary discoveries, “expanding the knowledge of what we have around us, the universe we live in and what kinds of things are going on. This is a really golden age.”

Writer: Andrea Christensen

 

More Information on This Article

Article Source/Further Information

News and Events

Image for Mystery of Haumea's Formation Solved
BYU Physics and Astronomy student Benjamin Proudfoot recently published research in the prestigious journal Nature Communications that solves the mystery of the icy dwarf planet Haumea's formation.
Image for Debunking acoustics myths around the Saturn V
When the Saturn V rocket propelled man to the moon in July 1969, the blast from the rocket’s engines was tremendous. Marked by a dazzling display of flames and deafening noise, the monumental event gave rise to widespread claims that the acoustic force of the rocket melted concrete and ignited grass fires miles away. New research from BYU debunks this common myth.
Image for Dr. Aleksandr Mosenkov, new Astronomy faculty
Dr. Aleksandr Mosenkov, new faculty, looks forward to receiving some of the first data from the James Webb Space Telescope to study galaxy formation
Image for Sounding out the Deep: Traci Neilsen’s Trip to the North Atlantic
A recent research adventure took Dr. Traci Neilsen and two students to the North Atlantic Ocean. Neilsen, an associate professor of physics at BYU, and her team apply artificial intelligence to noises in the ocean to classify the seabed.
Image for Reveling in Uncertainty
Despite the inherent time constraints of engaging undergraduate and graduate students in research, Scott Bergeson enjoys teaching this “seek and find” principle to his students, a principle that has become his philosophy for life.
Image for BYU Acoustics Records Artemis Launch
A group of BYU students and professors gathered acoustical recordings of at the world’s most powerful rocket launch.
Image for Kent Gee Recognized by AIAA
Kent Gee is selected as Associate Fellow of American Institute of Aeronautics and Astronautics in their class of 2023
Image for West Mountain Observatory contributes to understand distant galaxy
BYU’s West Mountain Observatory was one of 37 ground-based telescopes throughout the world monitoring the active galaxy that is roughly 1 billion light years away.
Image for Dr. Tim Leishman retires from BYU
Dr. Leishman's time at BYU was filled with great teaching and profound mentoring
Image for Dr. John Colton: Table Tennis Champion
Dr. John Colton won the 2022 BYU intramural table tennis tournament