Astronomer co-authors paper in Nature

In December 2016, what appears on digital telescopic images to be a star among stars became around 250 times brighter than usual.

Nearly 8 billion light years away, CTA 102 is a supermassive black hole surrounded by a disc of swirling matter and jets of material shooting away from it (collectively known as a blazar). And when it brightened, astronomers took note.

“In the world of astronomy, that’s huge; that hardly ever happens,” said J. Ward Moody, a BYU astronomy professor and member of the Whole Earth Blazar Telescope Collaboration (WEBTC). As part of the WEBTC, which recently released a paper in Nature on their CTA 102 findings, Moody captured multiple daily images of the blazar with a small optical telescope in Millard County. “When that blew like it did, it gave us the best opportunity to date to understand why blazars suddenly brighten.”

And studying the blazar with the help of the light, in turn, can offer insights into how galaxies form. Most nearby galaxies have supermassive black holes at their centers. The older galaxies’ black holes stand alone, having long ago absorbed or blasted out their swirling and jetting materials, and astronomers can’t study black holes themselves since they don't give off light. But the black holes in younger galaxies are surrounded by materials and all sorts of high-energy physics.

“These supermassive black holes seem to be in the center of all galaxies, and we want to know why and where they come from,” Moody said. “And how do you understand a black hole when it doesn't give off light itself? You study everything around it. How that material interacts with it tells us a great deal.”

CTA 102’s 2016 brightening (caused by a chunk of gas jetting out through a magnetic tube) also allowed researchers to explore the structure of blazars, which, because they are so far away, are only visible through photometric images as pinpointed light.

“It’s detective work — very hard detective work,” Moody said.

In this Nature paper, the international team of researchers, based on data collected during the ultra-light period, reveal that the jets shooting from the blazar are likely weaving instead of straight lines. As material came along the jet, it looped around and swept past astronomers’ line of sight.

Moody, an astronomy aficionado since childhood, said that although the work can be painstaking, it’s rewarding. “Through decades of careful research, we’ve been able to find out that all pinpoints of light are not the same,” he said. “Some are stars, a few are these nuclei of galaxies that are billions of light years away. Just the thrill of learning how the universe is put together is what has sustained me my whole career.”

More Information on This Article

Article Source/Further Information

News and Events

Image for Gus Hart Receives the Karl G. Maeser Research and Creative Arts Award
Dr. Gus Hart received the 2024 Karl G. Maeser Research and Creative Arts Award for his work in computational material science and his continued innovation in computational methods.
Image for Astronomers Discover New Course
This winter, ten students in BYU’s new “Advanced Planetary Astrophysics” taught by Darin Ragozzine course gained hands-on experience in planetary science research, mastering interdisciplinary skills to prepare for future careers in astronomy.
Image for New Applied Physics Major with an Emphasis in Data Science
Starting Fall 2025, BYU will offer a new Applied Physics: Data Science major that combines rigorous physics training with data science skills to prepare students for the growing demand in data-driven careers.
Image for The Physics of Life
BYU's new Biological Physics course introduces students to the physics behind biological processes, fostering interdisciplinary skills to tackle complex biological questions.
Image for Dr. Kent Gee Receives Top faculty Award
Dr. Kent Gee has been named the recipient of the Karl G. Maeser Distinguished Faculty Lecturer Award
Image for New Acoustics Major
The BYU Physics & Astronomy department recently introduced the Applied Physics: Acoustics degree.
Image for Chris Verhaaren Creates Particle Physics Class
After 3 years of being offered as 513R, elementary particle physics is finally an official course and accepted for credit in the physics major!
Image for Drs. Davis and Vanfleet Receive Technology Transfer Award
BYU Physics and Astronomy Professors Dr. Davis and Dr. Vanfleet recently received the 2024 award for outstanding achievement in technology transfer from the BYU Technology Transfer Office.
Image for A Practical Scientist’s Field Guide to Dealing with Science and Religion.
Dr. Michael Ware hopes to help students develop the skills to navigate discussion of science and religion
Image for Kent Gee Forum: Lessons from Noise, Crackle to Calm
This year’s Karl G. Maeser Distinguished Faculty Lecturer, Kent Gee, delivered his forum address on the science of sound and how he and BYU students have contributed to significant research in the acoustics industry.
Image for Campbell and Stokes Receive Crystallographic Association Award
In July 2025, Drs. Branton Campbell and Harold Stokes (BYU Emeritus Professor) will receive the Kenneth N. Trueblood Award from the American Crystallographic Association for exceptional achievement in computational crystallography.
Image for New ESC Weather Station
A group of undergraduate students braved the heat and heights of the ESC roof to install a new weather station. The station is up and running, and will hopefully record data for years to come.
Image for Study analyzes distant Kuiper Belt object with NASA's Hubble data
Using data from NASA's Hubble Space Telescope, a new study suggests that an object previously thought to be a binary system may be a rare triple system of orbiting bodies.
Image for BYU’s Rising Astronomers Take Center Stage at the Winter AAS Conference
In early January 2025, a group of 16 students from Brigham Young University’s Physics & Astronomy Department showcased their research at the prestigious American Astronomical Society (AAS) in National Harbor, Maryland.
Image for Acoustics group studies the roar of SpaceX's Starship
Acoustics faculty and students measure the thunderous noise of the world’s most powerful rocket, exploring its impact on communities and the environment.