Nature and electronics meet: How to make a tiny wire and connect it to DNA

Using the structure of DNA as electrical circuitry in computer chips may shrink the costs of production in the field of nano-electronics.

In a new study published in Chemistry of Materials, a team of Brigham Young University scientists introduces a method for making tiny wires on an insulating surface and connecting them at pre-determined points on a strand of DNA.

“We’re using a bottom-up approach to see if we can get things like DNA, proteins and other chemicals to assemble exactly where we direct them,” said Matthew Linford, associate professor of chemistry and biochemistry at BYU. “We hope this will provide new models for shrinking the size for semiconductor chips.”

The study’s publication coincides with the award of a $1 million grant from the National Science Foundation for the BYU researchers to continue the project. The grant will fund the project for four years with the goal of advancing the use of DNA as a template for tiny electrical circuits.

The process begins by etching a carefully controlled pattern onto a surface using an atomic force microscope. This is done in a chemical solution that leaves an extremely thin layer of metal over the pattern, making tiny wires. To these wires, the researchers bind strands of DNA that become the scaffolding for an electrical circuit.

“What we are borrowing from nature is the great flexibility DNA has to form a wide variety of shapes,” said Robert Davis, associate professor of physics and astronomy at BYU. “The DNA is also robust and can handle a wide variety of conditions.”

Along with the prospect for developing a cheaper way to make computer chips, the researchers hope their work leads to devices that are packed more densely than today’s semiconductors.

The project crosses three disciplines at BYU: chemical engineering, chemistry and physics. Joining Linford and Davis on the NSF grant award is John Harb, professor of chemical engineering and associate dean of the Ira A. Fulton College of Engineering and Technology; Dean Wheeler, assistant professor of chemical engineering; and Adam Woolley, associate professor of chemistry and biochemistry. Woolley is also a recent recipient of the Presidential Early Career Award for Scientists and Engineers, the government’s highest honor offered to young scientists.

Students at the graduate and undergraduate level also assist the project in the lab and benefit from exposure to scientific fields other than their major.

“This is providing the students with outstanding training across a number of disciplines,” Linford said. “If you go into industry, people have problems to solve and it doesn’t matter what discipline you tap into to solve that problem.”

Writer: Marissa Ballantyne

 

More Information on This Article

Article Source/Further Information

News and Events

Image for BYU’s Rising Astronomers Take Center Stage at the Winter AAS Conference
In early January 2025, a group of 16 students from Brigham Young University’s Physics & Astronomy Department showcased their research at the prestigious American Astronomical Society (AAS) in National Harbor, Maryland.
Image for Acoustics group studies the roar of SpaceX's Starship
Acoustics faculty and students measure the thunderous noise of the world’s most powerful rocket, exploring its impact on communities and the environment.
Image for Gus Hart Receives the Karl G. Maeser Research and Creative Arts Award
Dr. Gus Hart received the 2024 Karl G. Maeser Research and Creative Arts Award for his work in computational material science and his continued innovation in computational methods.
Image for Astronomers Discover New Course
This winter, ten students in BYU’s new “Advanced Planetary Astrophysics” taught by Darin Ragozzine course gained hands-on experience in planetary science research, mastering interdisciplinary skills to prepare for future careers in astronomy.
Image for New Applied Physics Major with an Emphasis in Data Science
Starting Fall 2025, BYU will offer a new Applied Physics: Data Science major that combines rigorous physics training with data science skills to prepare students for the growing demand in data-driven careers.
Image for The Physics of Life
BYU's new Biological Physics course introduces students to the physics behind biological processes, fostering interdisciplinary skills to tackle complex biological questions.
Image for Dr. Kent Gee Receives Top faculty Award
Dr. Kent Gee has been named the recipient of the Karl G. Maeser Distinguished Faculty Lecturer Award
Image for Drs. Davis and Vanfleet Receive Technology Transfer Award
BYU Physics and Astronomy Professors Dr. Davis and Dr. Vanfleet recently received the 2024 award for outstanding achievement in technology transfer from the BYU Technology Transfer Office.
Image for New Acoustics Major
The BYU Physics & Astronomy department recently introduced the Applied Physics: Acoustics degree.
Image for Chris Verhaaren Creates Particle Physics Class
After 3 years of being offered as 513R, elementary particle physics is finally an official course and accepted for credit in the physics major!
Image for A Practical Scientist’s Field Guide to Dealing with Science and Religion.
Dr. Michael Ware hopes to help students develop the skills to navigate discussion of science and religion
Image for Kent Gee Forum: Lessons from Noise, Crackle to Calm
This year’s Karl G. Maeser Distinguished Faculty Lecturer, Kent Gee, delivered his forum address on the science of sound and how he and BYU students have contributed to significant research in the acoustics industry.
Image for Campbell and Stokes Receive Crystallographic Association Award
In July 2025, Drs. Branton Campbell and Harold Stokes (BYU Emeritus Professor) will receive the Kenneth N. Trueblood Award from the American Crystallographic Association for exceptional achievement in computational crystallography.
Image for New ESC Weather Station
A group of undergraduate students braved the heat and heights of the ESC roof to install a new weather station. The station is up and running, and will hopefully record data for years to come.
Image for Study analyzes distant Kuiper Belt object with NASA's Hubble data
Using data from NASA's Hubble Space Telescope, a new study suggests that an object previously thought to be a binary system may be a rare triple system of orbiting bodies.