Scientists grow micro-machines (and "nano Jimmer") from carbon

A Brigham Young University physics student and his professor had some fun with their new method of growing tiny machines from carbon molecules.

We’ve seen some creative ways of making tiny BYU logos before, like engraving these nano-sized letters in silica and shaping these even smaller letters from DNA strands. But growing a nano-logo? That’s probably a first on campus.

Here is how BYU physics professor Robert Davis and his student Taylor Wood do it: They start by patterning the iron seeds of the logo onto an iron plate. Next they send heated gas flowing across the surface, and a forest of carbon nano-tubes springs up.

“It’s a really fragile structure at this point – blowing on it or touching it would destroy it,” Davis said. “We developed a process to coat and strengthen the tubes so that we can make microstructures that have practical applications.”

Another student, Jun Song, used the process to make devices that quickly and neatly separate the various chemicals contained in a solution. The technique is detailed by the BYU physicists in a new study published in the scientific journal Advanced Functional Materials.

As demonstrated in the paper, their approach using carbon nanotubes is more precise than current chemical separation methods because it gives more control over the channels that the fluids flow through. That’s why the company US Synthetic licensed the commercial rights from BYU.

Designing little logos and separating chemicals isn’t all the BYU researchers are doing, either. They’re also building several kinds of micro-machines including actuators, switches and humidity-detecting cantilevers. Next on their agenda is to create filtration devices. Another company, Moxtek, also entered into a licensing agreement with BYU for applications to their X-ray windows.

“The technology is moving in a lot of directions,” said Davis.

Physics professor Richard Vanfleet and chemistry professor Matthew Linford also contributed to the project and appear as co-authors on the new study. Two researchers from US Synthetic also appear as co-authors.  

See more of their work at nano.byu.edu.

 

More Information on This Article

Article Source/Further Information

News and Events

Image for Steve Summers' Insights for Students
Alumni Steve Summers answers interview questions for current students
Image for Dr. John Colton’s Sabbatical to the National Renewable Energy Laboratory
Dr. John Colton embarked on a six-month sabbatical at the National Renewable Energy Laboratory (NREL) in Colorado to explore the use of terahertz radiation in probing the chiral properties of hybrid perovskite materials, a research area previously unfamiliar to him.
Image for BYU Women Represent at CUWiP 2024
21 women student attend conference at Montana State University, where students engaged in keynote speeches, panels, and research presentations.
Image for Nathan Powers, Updated labs and AAPT lab committee work
Dr. Powers initiated the effort to update BYU’s physics undergraduate lab curriculum in 2015. The revamped curriculum, aimed at teaching students how to construct knowledge from experiments.
Image for Dr. Stephens’ Sabbatical to University of Arizona
Dr. Stephens participated in a research project at the University of Arizona focused on studying brown dwarfs using the James Webb Space Telescope (JWST).
Image for Adam Fennimore's Insights for Students
Alumni Adam Fennimore shares career insights for current students
Image for Society of Physics Students Awarded Outreach Grant
BYU's SPS is selected for Marsh Award for their outreach plan with Boys & Girls Club
Image for Rocket Noise and Bird Songs
Hart, Gee, and their research group study the impact of rocket noise on wildlife
Image for Dr. Ragozzine's Nice, France Obersvatoire Sabbatical
Darin Ragozzine collaborates with leading planetary scientists in France
Image for New Faculty Member, Dr. Greg Francis
Dr. Greg Francis joins faculty, specializing in Physics Education