BYU uses planet-hunting satellite to observe supermassive black hole

If you want to see just how far BYU’s latest research extends, step outside of your house tonight, look up towards the sky, focus your view between the constellations of Cygnus and Lyra, and then zoom in about 100 million light years.

That’s the home of a galaxy known as KA 1858, which contains a black hole that BYU scientists observed with the help of NASA and other astrophysicists throughout the University of California system.

The study, which appears in the Astrophysical Journal, estimates that this black hole has a mass of approximately 8 million times the mass of our sun.

Originally, the NASA Kepler satellite’s main mission is to hunt for earth-like planets in our own galaxy. In this study, however, researchers were able to combine data from the Kepler mission with ground-based data to observe black hole characteristics. Many of the ground-based observations were performed at BYU’s West Mountain Observatory, the largest research observatory in Utah.

“It was a long project that involved lots of different observers, some of them around the world,” said Professor Michael Joner, co-author of the study. “Using measurements that were done at BYU, we were able to determine that the mass of the central black hole for this galaxy was about 8 million times the mass of the sun — that’s a really really massive object.”

Astronomers are used to measuring light radiated by different type of objects, and black holes are very difficult to measure because they don’t give off any radiant energy. For this reason, Joner and masters student Carla Carroll, who is also a co-author of the study, used a method known as reverberation mapping.

Reverberation mapping involves observing the light that is emitted as material spirals toward the black hole. At different distances from the center, the light interacts with nearby gases, which then re-emit that light. These groups of light reach the ground-based telescope within a few days of each other. By analyzing this time difference and by measuring how fast the material is moving around the center of the galaxy, they were able to determine the mass of this central black hole.

Mike Joner in the observatory at BYU's Eyring Science Center. Photo by Mark A. Philbrick

Mike Joner in the observatory at BYU’s Eyring Science Center. Photo by Mark A. Philbrick

According to Carroll, current techniques for this method require some of the largest, and quite overbooked, telescopes in the world. She and Joner are working on a way to use smaller telescopes that have the abilities to observe different active galaxies. This way, astrophysicists everywhere can have the ability to do this science using smaller and less costly telescopes.

“After lots of collaboration, we were both learning amazing things and coming up with new ideas and possibilities,” Carroll said. “The best part of this project for me was learning about active galactic nuclei and supermassive black holes on a level I never could have in either undergraduate or graduate classroom settings.”

Carroll is finishing up a similar project to the publication and will graduate in April 2015 with a Master of Science. She recently earned admission to the University of Heidelberg in Germany for a Ph.D. program in astrophysics.

Mentored research opportunities are a big reason why BYU is ranked so highly as a Ph.D. launch pad. According to the National Science Foundation, BYU ranks fifth in the country for number of graduates who go on to receive doctorate degrees.


More Information on This Article

Article Source/Further Information

News and Events

Image for Mystery of Haumea's Formation Solved
BYU Physics and Astronomy student Benjamin Proudfoot recently published research in the prestigious journal Nature Communications that solves the mystery of the icy dwarf planet Haumea's formation.
Image for Dr. John Colton: Table Tennis Champion
Dr. John Colton won the 2022 BYU intramural table tennis tournament
Image for Debunking acoustics myths around the Saturn V
When the Saturn V rocket propelled man to the moon in July 1969, the blast from the rocket’s engines was tremendous. Marked by a dazzling display of flames and deafening noise, the monumental event gave rise to widespread claims that the acoustic force of the rocket melted concrete and ignited grass fires miles away. New research from BYU debunks this common myth.
Image for Dr. Aleksandr Mosenkov, new Astronomy faculty
Dr. Aleksandr Mosenkov, new faculty, looks forward to receiving some of the first data from the James Webb Space Telescope to study galaxy formation
Image for BYU Acoustics Records Artemis Launch
A group of BYU students and professors gathered acoustical recordings of at the world’s most powerful rocket launch.
Image for Kent Gee Recognized by AIAA
Kent Gee is selected as Associate Fellow of American Institute of Aeronautics and Astronautics in their class of 2023
Image for West Mountain Observatory contributes to understand distant galaxy
BYU’s West Mountain Observatory was one of 37 ground-based telescopes throughout the world monitoring the active galaxy that is roughly 1 billion light years away.
Image for Dr. Tim Leishman retires from BYU
Dr. Leishman's time at BYU was filled with great teaching and profound mentoring