The Sound of Music, According to Physicists

1407-08 230.CR2 Acoustic Research–Large Anechoic Chamber. Physical and Mathematical Sciences College, Physic and Astronomy Department. Tim Leishman Testing notes from a Trombone played by Marcus Anderson July 8, 2014 Photo by Mark A. Philbrick Copyright BYU Photo 2014 All Rights Reserved (801)422-7322
Copyright BYU Photo 2014 All Rights Reserved 

Joshua Bodon is sick of hearing “Somewhere Over the Rainbow.” More specifically, he’s sick of hearing one 25-second clip of the song repeated more than 550 times.

For almost two years, this physics grad student has been testing how sound radiates from live musical instruments, which includes hearing the same song over and over…and over. But the monotony has a purpose; it’s all about helping musicians, instrument makers, concert hall designers, audio engineers and music producers enhance sound quality.

The work takes place in one of two anechoic chambers at BYU. Anechoic, meaning “free from echoes and reverberation,” describes a room built with walls that absorb sound energy, so noise can’t bounce back to a listener.

Bodon and physics professor Timothy Leishman devised a recording system with a rotating chair and a semicircular array of 37 microphones that puts musicians out of their comfort zone.

“Some people go in there and it’s so quiet that it feels like everything is imploding in on them,” said Darin Bradford, a music professor who played several instruments for the research. “I was really happy to be involved – it was a really fascinating experience.”

The musicians who play for the study face three difficulties that they never encounter in a concert hall:

  • They have to sit on a chair elevated several feet above the floor. That allows the research team to capture sound that radiates downward.
  • The walls don’t bounce sound back to the musician, which changes how they hear the notes they play. If any note in a chromatic scale or musical excerpt is slightly off-key, they’ve got to start over.
  • While they play, they have to keep a laser that’s attached to their instrument pointed inside of a target. Slight movements that move the laser outside of the target alter the direction of the sound waves.

When they finally get everything right, the chair rotates five degrees, and they do it all over again. The process repeats 72 times until the 360-degree revolution has been completed. A complete recording for one instrument can take anywhere from five to eight hours. Fortunately these musicians – both students and faculty at BYU – get paid. They also get a break each time they have rotated 90 degrees.

When the recordings are finished, Bodon and his team of three undergraduates, Michael Dennison, Claire McKellar and Michael Rose sort through the data – about 250 gigabytes per instrument. The students create balloon plots that map each instrument’s sound radiation over a sphere. The team has become so proficient at this process, that they can do it start to finish in less than 24 hours.

So far the team has completed recordings and mapping of the cello, violin, trombone, French horn, baritone saxophone, oboe, clarinet, bassoon, viola and trumpet.

The recording system provides better “directivity mapping” for instruments than what is currently available in the music industry. It uses the 37-microphone array to record at each five-degree musician rotation, resulting in 2,522 data points that show visually how the sound radiates from the instrument. Here is an animation of the sound radiating from a bassoon:

The tedious work is rewarding for the students both in study’s findings and in research experience. Early in their college experience, they’re learning how to perform high-quality research and use advanced acoustical equipment.

“The difference with BYU is how accessible the chambers are to students,” Bodon said. “Anyone that is doing research, undergraduate or graduate students, has a key to our facilities, so at any time, we can go in and use them as needed.”

Bodon explained how valuable this hands-on experience is, especially as he begins job hunting after graduation.

“A few people have been amazed I’ve done all this for a master’s degree,” Bodon said. “The fact that I’ve been able to handle so many pieces of equipment and I don’t have to learn as much on the job is definitely a leg up.”

BYU’s mentored research program helps both graduate and undergraduate students gain necessary experience in a variety of fields. Bodon said the opportunity to help manage a team is a valuable skill he’s learned in addition to the research and analysis skills necessary in his discipline.

Professor Leishman and Bodon have high hopes for the impact of their live-music research. The findings first and foremost help musicians and instrument makers better understand the behavior of their instruments. But they also have to potential to help audio engineers make better, more efficient recordings and help architects design better recording studios and concert halls. The new understanding of sound could even help conductors better understand and arrange their orchestras on stage.

“This is bridging science and art,” Leishman said of the research. “We’re giving these professionals scientific data to help them make better decisions. That is the vision.”

This research is funded by the Institute for Scientific Research in Music. Former grad student Jay Eyring and Wes Lifferth, a machinist, also developed the recording system alongside Leishman and Bodon.

—BYU News

More Information on This Article

Article Source/Further Information

News and Events

Image for Mystery of Haumea's Formation Solved
BYU Physics and Astronomy student Benjamin Proudfoot recently published research in the prestigious journal Nature Communications that solves the mystery of the icy dwarf planet Haumea's formation.
Image for Capturing Images at the New Mexico Observatory
Students and faculty from theBYU Astronomy and Physics department captured images from space at an observatory in New Mexico to research explaining the evolution of the universe.
Image for How Physics Students Thrive in a Pandemic
Ways Students have Adapted to the Pandemic
Image for New Professor Dr. Benjamin Boizelle
Dr. Boizelle brings radio astronomy to the department
Image for Dr. Dennis Della Corte launches Consortium of Molecular Design
Dr. Della Corte's computational biophysics is the heart of the new Consortium of Molecular Design
Image for Dr. Scott Sommerfeldt Awarded an ASA Silver Medal
Dr. Scott Sommerfeldt awarded the Silver Medal of the Acoustical Society of America for work in active noise control
Image for Sabbatical at Cambridge for Dr. Gus Hart
Dr. Hart's sabbatical propels work on new techniques for constructing interatomic potentials
Image for Dr. Steve Turley -NSF Program Officer
Dr. Turley influences the future of physics education during his time as program officer for education division of the National Science Foundation
Image for Planetarium Updates
A new and improved planetarium experience