Mystery of Haumea's Formation Solved

Benjamin Proudfoot and Darin Ragozzine in front of computers
Research from BYU doctoral student Benjamin Proudfoot and BYU astronomy professor Darin Ragozzine details the creation of the dwarf planet Haumea, solving one of astronomy's puzzles.
Photo by Donovan Kelly/BYU Photo

By Tyler Stahle, May 09, 2022

There’s an object deep in the solar system that has befuddled modern scientists for years.

The Kuiper Belt lies beyond Neptune and is populated by many icy bodies, similar to the asteroid belt. And while you’ve likely heard of Pluto — the most famous member of the Kuiper Belt — you’re probably not as familiar with the second most famous object, the spinning dwarf planet Haumea.

Scientists have no idea how this dwarf planet came to be, nor why its properties are so aberrant. For instance, Haumea is one of the fastest spinning objects in the solar system and is covered in crystallized water. Because it spins so fast, its shape becomes distorted, making it look like a football. Several other Kuiper belt objects, with similar features to Haumea, have long been thought to have been pieces of Haumea, broken off during an enormous collision. These bodies, often called the Haumea family, are central to the mystery of Haumea’s origin.

Understanding its origin has been a real head-scratcher for scientists since Haumea’s discovery in 2005. In 2012, scientists concluded that “various models have been proposed to match these unusual constraints, although so far none of these match the full set.”

But now the key element has been found.

In a study published in the scientific journal Nature Communications, BYU doctoral student Benjamin Proudfoot and BYU astronomy professor Darin Ragozzine detail the planet’s unique creation, solving one of astronomy’s puzzles.

The breakthrough for Proudfoot and Ragozzine came when they took a step back and considered the dwarf planet in the context of the broader solar system creation. Rather than applying their knowledge about traditional asteroid formation, Proudfoot looked at how Haumea and its family would have been affected by Neptune’s changing orbit in the early solar system.

Haumea
The dwarf planet Haumea is one of the fastest spinning objects in the solar system and is covered in crystallized water.
Photo by NASA Science

Reframing the question guided Proudfoot to the discovery.

“When the solar system first formed, astronomers think that Neptune and Uranus formed much closer to the sun than they currently are,” said Proudfoot. “Beyond this, a large belt of Pluto-sized bodies was slowly forming. Over time, gravity from these bodies pulled Neptune outwards, colliding with the belt and flinging Pluto-sized bodies like Haumea across the solar system. Eventually forming what we see today as the Kuiper belt.”

Proudfoot thinks this massive solar system-wide upheaval, could have led to a collision between Haumea and a large moon, creating nearby Haumea family members and the two small moons seen today. Understanding the circumstances of the collision, especially its timing, proved to be key to finally putting together a unified story.

“When the collision between Haumea and its moon happens during this upheaval, it changes the pattern of orbits of the Haumea family, leading to a much better match to astronomical observations,” noted Proudfoot.

Solving the mystery of Haumea’s formation now opens the door to greater understanding of the outer solar system.

“We took a step back and re-evaluated some assumptions that we were making,” said Ragozzine, who was a member of the original research team that discovered the Haumea family in 2005 as a Ph.D. student. “Taking a big picture view helped all of the pieces come together. We’re starting to peek behind the curtain of the solar system.”

For Proudfoot, it’s a project that caps off what he calls an incredible experience at BYU, a journey that began in 2017.

“Dr. Ragozzine is a great mentor to me. His goal has been to help me publish meaningful peer-reviewed research and he helped me do that as an undergraduate and now again as a Ph.D. student,” he said. “I’m so glad I’ve been able to play a part in unraveling the stories of our solar system.”

Ragozzine and his students continue investigating scientific puzzles relating to the outer solar system and exoplanets around other stars. “We have really high-quality students at BYU and this is cutting-edge planetary science research. We are figuring things out that no one else has.”

 

More Information on This Article

Article Source/Further Information

News and Events

Image for Dr. Adam Bennion bring Physics Education Research to BYU
Dr. Adam Bennion, hired Fall 2021, is an exciting addition to BYU's physics education program
Image for Particle Physics Comes to BYU with Dr. Chris Verhaaren
Dr. Chris Verhaaren, Particle Physicist, hired as new faculty member Fall 2022
Image for Dr. Aleksandr Mosenkov, new Astronomy faculty
Dr. Aleksandr Mosenkov, new faculty, looks forward to receiving some of the first data from the James Webb Space Telescope to study galaxy formation
Image for Dr. Tim Leishman retires from BYU
Dr. Leishman's time at BYU was filled with great teaching and profound mentoring
Image for Dr. John Colton: Table Tennis Champion
Dr. John Colton won the 2022 BYU intramural table tennis tournament
Image for Physics and Astronomy Student Advisory Board
We are looking for students who would like a leadership opportunity to be more involved with promoting student needs.
Image for Looking For New Faculty
The Department of Physics and Astronomy at Brigham Young University (BYU) in Provo, Utah, invites applications for a faculty position to begin August 2023. Qualifications include a Ph.D. in physics, astronomy or related field, ability to pursue a strong and independent research agenda, and a clear commitment to both undergraduate and graduate teaching.
Image for Mystery of Haumea's Formation Solved
BYU Physics and Astronomy student Benjamin Proudfoot recently published research in the prestigious journal Nature Communications that solves the mystery of the icy dwarf planet Haumea's formation.
Image for Capturing Images at the New Mexico Observatory
Students and faculty from theBYU Astronomy and Physics department captured images from space at an observatory in New Mexico to research explaining the evolution of the universe.
Image for Debunking acoustics myths around the Saturn V
When the Saturn V rocket propelled man to the moon in July 1969, the blast from the rocket’s engines was tremendous. Marked by a dazzling display of flames and deafening noise, the monumental event gave rise to widespread claims that the acoustic force of the rocket melted concrete and ignited grass fires miles away. New research from BYU debunks this common myth.