Selected Publications
Outdoor ambient acoustical environments may be predicted through machine learning using geospatial features as inputs. However, collecting sufficient training data is an expensive process, particularly when attempting to improve the accuracy of models based on supervised learning methods over large, geospatially diverse regions. Unsupervised machine learning methods, such as K-Means clustering analysis, enable a statistical comparison between the geospatial diversity represented in the current training dataset versus the predictor locations. In this case, 117 geospatial features that represent the contiguous United States have been clustered using K-Means clustering. Results show that most geospatial clusters group themselves according to a relatively small number of prominent geospatial features. It is shown that the available acoustic training dataset has a relatively low geospatial diversity because most training data sites reside in a few clusters. This analysis informs the selection of new site locations for data collection that improve the statistical similarity of the training and input datasets.
Flushing a vacuum-assisted toilet generates noise levels that can be disturbing both to users and those nearby. Peak radiated noise levels correlate with the time when the valve opens and closes, while the noise levels when the valve is com- pletely open are also relatively high. Significant noise ranges between 300 Hz and 3000 Hz. It was hypothesized that increasing the in-tube distance between the flush valve and the bowl in addition to increasing the bend radius of the tube would reduce radiated noise levels. These modifications resulted in a reduction of about 14 dB in the radiated noise during the valve opening and closing in ad- dition to a reduction of about 5 dB while the valve is completely opened. Inter- mediate results of varying the tube length and bend radius are presented to show their effects on the radiated sound levels. Two tube inserts were designed to fit (1) underneath and (2) behind the toilet in a compact manner. They were tested to show that they maintain noise control performance without modifying any other part of the toilet.
This study investigates the far-field noise from three Falcon 9 vehicle launches from Vandenberg Air Force Base, CA, USA, as measured from the same location within the nearby community of Lompoc. The overall sound pressure levels for the three launches are shown to be similar, but some differences in the early launch period are thought to be weather-related. The peak directivity angle in overall level is approximately 65 deg, which is consistent with horizontally-fired, static rocket data. For the third launch, waveforms and spectra are analyzed for different events during the launch sequence. The measured spectral bandwidth decreases with time, but spectral levels remain above the ambient noise throughout the main-engine firing. Additionally, late-launch phenomena observed in the data appear to be correlated with main-engine cutoff and second-stage engine start.
Noise from a tactical aircraft can impact operations due to concerns regarding military personnel noise exposure and community annoyance and disturbance. The efficacy of mission planning can increase when the distinct, complex acoustic source mechanisms creating the noise are better understood. For each type of noise, equivalent acoustic source distributions are obtained from a tied-down F-35B operating at various engine conditions using the hybrid method for acoustic source imaging of Padois, Gauthier, and Berry [J. Sound Vib. 333, 6858–6868 (2014)]. The source distributions for the distinct noise types are obtained using different sections of a 71 element, ground-based linear array. Using a subarray close to the nozzle exit plane, source distributions are obtained for fine-scale turbulent mixing noise and broadband shock-associated noise, although grating lobes complicate interpretations at higher frequencies. Results for a subarray spanning the maximum sound region show that the multiple frequency peaks in tactical aircraft noise appear to originate from overlapping source regions. The observation of overlapping spatial extent of competing noise sources is supported by the coherence properties of the source distributions for the different subarrays.
Measurements of full-scale high-performance military aircraft reveal phenomena that are not widely seen at laboratory scales. However, recent modifications to large eddy-simulation (LES) methods allow for simulations of jets operating at a high-temperature ratio in a similar regime as military aircraft operating at afterburner. This work applies coherence analyses that have been previously used to study the jet noise field produced by military aircraft to the LES of a highly heated laboratory-scale jet. The coherence of the complex pressures along a near-field line approximately parallel to the shear layer as well as along the nozzle lip line shows evidence of distinct noise production mechanisms that transfer information differently from the flow to the field. A phenomenological comparison between the LES and measurements of an afterburning F-35 aircraft is then made. Although the LES is not run at the exact same conditions as the aircraft and does not reproduce all of the phenomena present in the aircraft’s jet noise field, differences between noise production mechanisms observed in the LES may describe some of the spatiospectral lobe phenomena observed in the measurements of the F-35.
The traditional method for intensity-based sound power estimates often used in engineering applications is limited in bandwidth by microphone phase mismatch at low frequencies and by microphone spacing at high frequencies. To overcome these limitations, the Phase and Amplitude Gradient Estimator (PAGE) method [Gee, Neilsen, Sommerfeldt, Akamine, and Okamoto, J. Acoust. Soc. Am. 141(4), EL357–EL362 (2017)] is applied to sound power for a reference sound source, a blender, and a vacuum cleaner. Sound power measurements taken according to ISO 3741:2010 (2010) are compared against traditional- and PAGE-processed intensity-based sound power estimates measured according to ANSI S12.12-1992 (R2017). While the traditional method underestimates the sound power at the spatial Nyquist frequency by 7–10 dB, the PAGE-based sound power is accurate up to the spatial Nyquist frequency, and above when phase unwrapping is successful.
Theses, Captstones, and Dissertations